CU-Boulder researchers involved in novel universe creation experiment

June 08, 1999

More than a dozen faculty and students from the University of Colorado at Boulder are part of an international team that has launched an unprecedented experiment in an attempt to explain how the universe's matter came to exist.

Taking place inside a giant underground machine at Stanford University, the research involves shooting beams of sub-atomic particles at each other, which creates particles not normally seen in nature. The smallest particles, known as B mesons and anti-B mesons, may hold the key to the existence of all the matter in the universe, which makes up everything from stars and planets to people and plants.

The massive facility, known as the Asymmetric B Factory at Stanford's Linear Accelerator Center, was designed and built by about 650 scientists and engineers from 10 nations at a cost of nearly $300 million. It began operating in late May.

"I'm incredibly optimistic about this project," said Associate Professor Patricia Rankin of CU-Boulder's physics department, a co-investigator on the project. Rankin, along with CU physics Professors Bill Ford and Uriel Nauenberg and Associate Professor Jim Smith, four postdoctoral researchers and several graduate students and technicians are involved in the project, which brings in about $1 million a year in federal grants to the CU-Boulder campus.

Cosmologists believe that within a trillionth of a second after the Big Bang in a flash of incredible heat, the universe created equal quantities of matter and antimatter. While atoms of ordinary matter contain a nucleus surrounded by negatively charged electrons and positively charged protons, atoms of antimatter contain positive electrons and negative protons.

At the instant following the Big Bang, cosmologists hypothesize nearly all of the matter and antimatter particles destroyed each other. But about one in every billion matter particles escaped destruction, enough to build today's universe.

The idea behind the Stanford experiments is to understand why the universe contains so much more matter than antimatter, said Rankin. "The fundamental question is where has all the anti-matter gone?" said Rankin. "As an example, if half of the material in the universe was antimatter and half was matter, if two people shook hands it could cause both of them to explode."

The B Factory at Stanford creates thousands of high-speed collisions between clumps of high-energy electrons and identical but oppositely charged particles known as positrons. The explosive collisions already appear to be producing B mesons, which decay swiftly -- in about a trillionth of a second.

The CU-Boulder team has been working on a sophisticated detector known as a "drift chamber" consisting of 27,000 wires strung through a gas medium. There are five additional detectors in the B Factory to measure products of B meson decays.

"These B mesons decay so swiftly that we have to reconstruct the decay of the particles indirectly using the devices contained in the detector," she said. "Because the occasional matter particle survives while antimatter particles do not, at some level we are probing why nature is not quite perfect."

Scientists believe a small imbalance between matter and anti-matter arose in the early stages of the universe's evolution, resulting in a slight excess of matter, said Rankin. The energy created when the matter and anti-matter destroyed each other resulted in what is now known as "cosmic microwave background radiation."

This radiation, which is found throughout the universe, is the remnant heat from the Big Bang and is now less than 3 degrees above absolute zero.

Some of the data generated by detectors at the Stanford facility over the next decade will be analyzed by undergraduate and graduate students at CU-Boulder, said Rankin.

A similar machine to measure matter and anti-matter has just been completed in Japan, creating a "neck-and-neck race" to solve the problem, she said.

University of Colorado at Boulder

Related Big Bang Articles from Brightsurf:

Do big tadpoles turn into big frogs? It's complicated, study finds
University of Arizona researchers studied the evolution of the body sizes of frogs and their tadpoles.

A 'bang' in LIGO and Virgo detectors signals most massive gravitational-wave source yet
Researchers have detected a signal from what may be the most massive black hole merger yet observed in gravitational waves.

Analysis: Health sector, big pharma spent big on lobbying for COVID-19 funding
To date, Congress has authorized roughly $3 trillion in COVID-19 relief assistance -- the largest relief package in history.

Unequal neutron-star mergers create unique "bang" in simulations
In a series of simulations, an international team of researchers determined that some neutron star collisions not only produce gravitational waves, but also electromagnetic radiation that should be detectable on Earth.

Supermassive black holes shortly after the Big Bang: How to seed them
They are billions of times larger than our Sun: how is it possible that supermassive black holes were already present when the Universe was 'just' 800 million years old?

Big data could yield big discoveries in archaeology, Brown scholar says
Parker VanValkenburgh, an assistant professor of anthropology, curated a journal issue that explores the opportunities and challenges big data could bring to the field of archaeology.

APS tip sheet: modeling the matter after big bang expansion
Matter's fragmentation after the big bang.

Giving cryptocurrency users more bang for their buck
A new cryptocurrency-routing scheme co-invented by MIT researchers can boost the efficiency -- and, ultimately, profits -- of certain networks designed to speed up notoriously slow blockchain transactions.

The core of massive dying galaxies already formed 1.5 billion years after the Big Bang
The most distant dying galaxy discovered so far, more massive than our Milky Way -- with more than a trillion stars -- has revealed that the 'cores' of these systems had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

The 'cores' of massive galaxies had already formed 1.5 billion years after the big bang
A distant galaxy more massive than our Milky Way -- with more than a trillion stars - has revealed that the 'cores' of massive galaxies in the Universe had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

Read More: Big Bang News and Big Bang Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to