Researchers identify biomarkers of early-stage pancreatic cancer in mice and man

June 09, 2008

SEATTLE - A multicenter team of researchers has identified a panel of proteins linked to early development of pancreatic cancer in mice that applies also to early stages of the disease in humans - a breakthrough that brings scientists a significant step closer to developing a blood test to detect the disease early, when cure rates are highest.

The findings, by senior author Samir "Sam" Hanash, M.D., Ph.D., of Fred Hutchinson Cancer Research Center, will be published in the June 10 issue of PLoS Medicine, a freely available, open-access online journal. Investigators from Massachusetts General Hospital, University of Michigan and Belfer Institute for Innovative Cancer Science at Dana-Farber Cancer Institute collaborated on the research.

"Our team identified, for the first time, protein changes associated with early-stage pancreatic-tumor development in genetically engineered mice that were also found to be associated with the presence of the disease in humans at an early, pre-symptomatic stage," said Hanash, head of the Hutchinson Center's Molecular Diagnostics Program. Hanash is an international leader in the field of proteomics, which seeks to identify clinically relevant trace proteins, or biomarkers, that are leaked by tumors into the blood. Scientists believe that such proteins could be used in screening blood tests for early and more accurate detection of cancer and other diseases.

"Our findings represent a breakthrough in the application of advanced proteomic technologies and mouse models to cancer-biomarker discovery," said Hanash, also a member of the Hutchinson Center's Public Health Sciences Division.

The five-biomarker panel, if developed into a commercial screening test, may be particularly useful when combined with a currently available test that measures a pancreatic-cancer biomarker called CA19.9, which is elevated in 80 percent of newly diagnosed patients but is not linked to asymptomatic, early-stage disease. Together, the biomarker panel and CA19.9 may significantly improve the detection of early-stage disease prior to the onset of symptoms and may also help better distinguish between cancer and pancreatitis, a noncancerous, inflammatory condition.

Early detection of cancer is crucial for long-term survival. Most solid tumors can be cured 90 percent of the time if they're detected and treated early, whereas cure rates for late-stage cancer are about 10 percent. Early detection is particularly relevant to pancreatic cancer, which is the fourth-leading cause of cancer death in the United States, with a five-year survival rate of only 3 percent. Because the disease is asymptomatic in the early stages, most patients are not diagnosed until the cancer has spread beyond the pancreas, which contributes significantly to the poor long-term survival rate.

"There is a substantial challenge in studying the early molecular changes in pancreatic cancer because most patients are diagnosed with advanced-stage disease and so there is a lack of suitable specimens for biomarker discovery," said paper co-author Nabeel Bardeesy, Ph.D., of the Massachusetts General Hospital Cancer Center.

Finding telltale proteins that can signal the earliest stages of cancer development can be like looking for the proverbial needle in a haystack, as blood contains a complex mixture of thousands of proteins. In addition, any two proteins may exist in concentrations more than a million-fold different from one another. "The ones that are likely to be useful for diagnosing cancer are probably the ones that exist at the lower end of the range, which makes them very hard to find with standard methods," Hanash said.

To guide their quest, Hanash and colleagues employed a variety of technologies to identify, measure and analyze blood proteins in mice and man. Since every protein is different, each has the equivalent of a distinguishing molecular "bar code." The goal is to identify protein signatures that are only present in cancer, which may then serve as biomarkers to detect early disease.

A significant boon to biomarker research - and one of the great scientific advances in the past century, according to paper co-author Ronald DePinho, M.D. - has been the incorporation of mouse models into many disciplines of science, including cancer research. "Our ability to now engineer mice with the same mutations that drive specific cancers in humans has provided powerful and accurate model systems to study virtually all aspects of the disease and then translate these new insights into improved prevention, detection and treatment strategies for cancer," said DePinho, director of the Belfer Institute at Dana-Farber Cancer Institute.

For this study, the researchers first analyzed blood samples from genetically engineered mouse models of pancreatic ductal adenocarcinoma at both early and late stages of tumor development. Of nearly 1,500 proteins identified in these mice, five were associated consistently with a precancerous condition known as pancreatic intraepithelial neoplasia, or PanIN, which, if left untreated, eventually progresses to full-blown pancreatic cancer.

The researchers then sought to determine whether the same biomarkers turned up in blood samples obtained from 30 recently diagnosed pancreatic-cancer patients. They also looked for the biomarkers in 13 people with asymptomatic, early-stage pancreatic cancer who had donated blood for another, unrelated study within a year of their cancer diagnosis. For comparison purposes, the researchers analyzed blood from 20 healthy subjects and 15 people diagnosed with chronic pancreatitis.

Next steps in the research will include validating additional candidate biomarkers and further testing of the biomarker panel they have assembled to see how well it distinguishes between pancreatitis and pancreatic cancer. The researchers also want to continue testing the value of a biomarker-panel approach for early detection of pancreatic cancer among those at increased risk, such as people with a strong family history of the disease.
-end-
The National Cancer Institute Mouse Models of Human Cancer Program, NCI Early Detection Research Network, National Institutes of Health, Canary Foundation, Paul Allen Foundation, Waxman Foundation, Verville Family Foundation and Deutsche Forschungsgemeinschaft funded the research.

Fred Hutchinson Cancer Research Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.