Cancer found to be a moving target

June 09, 2009

Cancer is the result of Darwinian evolution among populations of cells, in which the fittest cells win the struggle for survival, while ultimately killing the person of whom they are a part.

The mutator hypothesis, which states that normal human cells increase their rate of genetic change as a mechanism for speeding up the transformation to cancer cells, has been a pivotal concept in cancer biology for over 30 years, influencing our ideas both of how cancer arises and of the challenges of developing cancer therapies.

According to this hypothesis, an early step in becoming a cancer cell is a "mutator mutation", which causes the developing cancer to become genetically unstable. This accelerates the transformation of normal cells to cancer cells. It means that cancer cells are constantly changing, making them an elusive target for therapy.

However as a general concept applicable to all cancer, the mutator hypothesis has been debated on several grounds. Firstly, an increased mutation rate due to a mutator mutation could lead to an increased rate of random mutations that might reduce the fitness of the cell and its daughter cells (the "cell lineage") to compete for survival, dooming it to extinction before it could become malignant. Secondly, rates of cancer appearance in people can possibly be explained without a mutator mutation, just by continuing mutation at normal rates, and growth and selection of cell lineages with increased fitness; that is, by normal evolution occurring in populations of cells.

In an article published in the open-access journal PLoS ONE, Robert A. Beckman, a Visitor in the Simons Center for Systems Biology at the Institute for Advanced Study in Princeton, New Jersey, mathematically analyses the mutator hypothesis and compares the cancer-generating efficiency of mutator and non-mutator pathways to cancer, taking into account representative fitness changes a cell might experience as it potentially evolves to cancer. These fitness changes can be represented as pathways through a "fitness landscape", the equivalent of a topographic map of pathways to cancer.

Beckman had previously introduced the concept of efficiency in evaluating pathways to cancer. In previous work, he defined efficiency as the number of new cancer lineages expected to be created in the typical time it takes to develop cancer. He reasoned that, since most cancer cell lineages are eliminated by the body's defenses, or fail to establish a blood supply, the most efficient pathways to cancer would likely be the ones responsible for most cancers in people. He then showed that in the special circumstance where there are no fitness changes, mutator pathways are the most efficient path to cancer, even though getting the mutator mutation is itself an extra step.

In the current work, he shows more generally that mutator pathways are in most cases the most efficient path to cancer, even in the presence of fitness changes from a variety of fitness landscapes, addressing the previous objections to the mutator hypothesis. He also shows that the mutation rate which most efficiently evolves normal cells to cancer cells is likely to be higher than the mutation rate which is most efficient for driving the evolution of species. These findings provide strong support for the mutator hypothesis.

If the mutator hypothesis is true, there may be implications for cancer therapy. Genetic instability may enable cancer cells to rapidly evolve resistance to therapy, or may even mean that minority cell populations within a cancer are already primed to resist therapy. Cancers which show more genetic instability may more readily evade any given therapy, and may require different strategies for treatment.
-end-
Competing Interests Statement: Robert A. Beckman is a stockholder in Merck & Co., Inc. and Johnson & Johnson, Inc.

Contact:
Robert A. Beckman
Institute for Advanced Study
Email: eniac1@snip.net

Citation: Beckman RA (2009) Mutator Mutations Enhance Tumorigenic Efficiency across Fitness Landscapes. PLoS ONE 4(6): e5860. doi: 10.1371/ journal.pone.0005860

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT (URL goes live after the embargo ends): http://dx.plos.org/10.1371/journal.pone.0005860

PRESS-ONLY PREVIEW: http://www.plos.org/press/pone-04-06-beckman.pdf




Disclaimer

This press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

PLOS

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.