Nav: Home

It's not an illusion: Transforming infrared into visible light

June 09, 2016

Researchers have developed a compound that can transform near-infrared light into broadband white-light, offering a cheap, efficient means to produce visible light. The emitted light is also exceedingly directional, a desirable quality for devices like microscopes that require high spatial resolution, or for applications with high throughput, such as projection systems. Nils Wilhelm Rosemann and colleagues designed their compound of tin and sulfur, and with a diamondoid-like structure, then coating this scaffolding with organic ligands. When a laser directs near-infrared light into the compound, the structure of the compound alters the wavelength of the light through a non-linear interaction process, producing light at wavelengths that are visible to the human eye. The authors note that the warm, white-colored light that's emitted is very similar to a standard tungsten-halogen light source (2856 Kelvin), and can be adjusted based on levels of excitation via the laser. This development could open up new routes for advanced directed illumination technologies, especially since the materials used in this system are cheap, readily available, and easily scalable.
-end-


American Association for the Advancement of Science

Related Laser Articles:

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.
The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
More Laser News and Laser Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...