Nav: Home

A new way for prevention of pathogenic protein misfolding

June 09, 2016

Incorrectly folded proteins can cause a variety of diseases. Danish researchers have found a solution for preventing this misfolding.

Several diseases occur when mutations cause misfolding of proteins. These include "serpinopathies" which is a group of rare heritable diseases. They are caused by mutations of so-called "serpin" inhibitors of proteolytic enzymes involved in blood coagulation, tissue remodeling, and other important physiological functions. The mutations cause misfolding, which results in an inactive serpin and hence overactivity of the corresponding proteolytic enzyme.

The exact symptoms depend on which serpin is misfolded. The best known serpinopathy is α1-antitrypsin deficiency, which causes liver cirrhosis and lung emphysema. But also other serpins may misfold, for instance anti-thrombin and C1 inhibitor, leading to thrombosis and hereditary angioedema, respectively.

A long standing problem has been that agents preventing misfolding also inhibit the anti-proteolytic functions of the serpins. Working with a mutant of the serpin α1-antichymotrypsin, a group of Danish researchers has now designed a way of preventing misfolding while leaving the anti-proteolytic effect unabated. The α1-antichymotrypsin mutation is associated with chronic obstructive pulmonary disease (COPD).

The researchers have developed an RNA aptamer, which prevents misfolding and polymerisation of the α1-antichymotrypsin mutant and does not interfere with its ability to inhibit the target proteases, i.e., cathepsin G and chymotrypsin. One perspective is that similar strategies may be employed by other proteins prone to misfolding.
-end-
The results have been published in Cell Chem. Biol. An RNA aptamer preserving full activity of a pathogenic serpin mutant. Madsen, J.B., Andersen, L.M., Dupont, D.M., Trelle, M.B., Johansen, J.S., Jensen, J.K., Jørgensen, T.J.D., and Andreasen, P.A. (2016) Cell Chem. Biol.).

The work was done in a collaboration between scientists from the Department of Molecular Biology and Genetics, Aarhus University, and the Department of Biochemistry and Molecular Biology at the University of Southern Denmark. The project, headed by Peter A. Andreasen, has been supported by the Danish Research Council for Technology and Production with DKK 14.1 million. The project has already resulted in several biochemical and structural biology publications, but with the article in Cell Chem. Biol., the main purpose of the project has been accomplished.

For further information, please contact

Professor, dr. scient. Peter A. Andreasen
Institut for Molekylærbiologi og Genetik
arhus Universitet, Denmark
pa@mbg.au.dk
mobile: 45-2899-2589

Aarhus University

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.