Nav: Home

Cell Press breaks into physical sciences with launch of Chem

June 09, 2016

A new high-impact journal for chemists marks a leading biomedical publisher's first foray into the physical sciences. Cell Press, the home of Cell, Neuron, and Current Biology, launches Chem this July and officially begins the expansion of its portfolio to meet the needs of the wider research community.

Chem (@Chem_CP) aims to be a true sister journal to Cell by positioning itself as the "journal for exciting chemistry." Each issue will include original research articles that move the field forward, as well as front matter and reviews that explore how chemistry and its sub-disciplines can be a force for good. Nearly 100 advisory board members and a small committee of "next-generation advisors" will work with Chem's editors to continually develop the journal's scope and ambitions.

"One thing that's always struck me is that chemistry doesn't get the recognition it deserves and is key, in my view, to solving a number of global challenges," says Editor-in-Chief Robert Eagling, who came to Cell Press from the Royal Society for Chemistry. "Chem will first and foremost be about the conceptually new idea or innovation, but we're also trying to build on that and get authors to think about the potential impact of their research."

As a Cell Press publication, Chem will provide the same personal engagement with editors, dynamic presentation options, and hospitality that authors have come to expect. And like its flagship sister in biology, Chem will publish cutting-edge, thought-provoking advances across the breadth of the discipline, from physical chemistry to atmospheric and organic chemistry.

"This is an exciting time for Cell Press as we transition from being a recognized leader in publishing in biomedicine to a recognized leader in publishing across all scientific disciplines," says Cell Press CEO Emilie Marcus. "With its first issue 40 years ago, Cell had the ambitious goal of transforming the discipline of biology for both scientists and society; we have high expectations for Chem to do the same for chemistry."

Four papers are now available for preview ahead of the first issue at These include:

1. Bypassing Faulty Ion Channels

Ion-channel dysfunction is the underlying cause of diseases such as cystic fibrosis, in which passive chloride ion transport is impaired. One solution is to create small molecules that can carry chloride through membranes, replacing the need for functioning channels. However, many of these transporters exhibit a side effect of pH-gradient disruption, which can lead to cell death. Anthony Davis of the University of Bristol, Philip Gale of the University of Southampton, and colleagues show the first examples of transporters with a high selectivity for chloride over other ions in the cell, which now makes the biomedical application of these transporters a more realistic option.

Wu et al.: "Nonprotonophoric Electrogenic Cl? Transport Mediated by Valinomycin-like Carriers" / 10.1016/j.chempr.2016.04.002

2. A Stable Phosphorous Carbene Analog

Discovered more than two decades ago, stable carbenes (molecules with unusually bonded carbon atoms that had been thought to only exist during chemical reactions), now have a broad range of applications ranging from synthetic chemistry to material and biological sciences (e.g., Teflon). Guy Bertrand of the University of California, San Diego, and colleagues add to the carbene family by showing that with the right substituents, the phosphorus analogs, namely phosphinidenes, can be isolated at room temperature, allowing their chemistry and reactivity to be explored.

Liu et al.: "A Singlet Phosphinidene Stable at Room Temperature" / 10.1016/j.chempr.2016.04.001

3. Transforming Biomass without Fossil Fuels

Renewable resources and bio-based feedstocks may present a sustainable alternative to petrochemical sources to satisfy modern society's ever-increasing demand for energy and chemicals. However, the conversion processes needed for these future biorefineries will likely differ from those currently used in the petrochemical industry. In this review, David W. Flaherty of the University of Illinois at Urbana-Champaign, Dean Toste of the University of California, Berkeley, and colleagues survey approaches to producing chemicals from renewable sources and describe strategies for the conversion of these chemicals into fuels.

Wu et al.: "Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond" /10.1016/j.chempr.2016.05.002

4. Encapsulating Enzymes

Metal-organic frameworks are porous yet robust materials for encapsulating and protecting enzymes from degradation. In order for enzymes to be broadly applicable as catalysts in industry, they need to be protected from denaturation under harsh conditions. Omar Farha of Northwestern University and colleagues show the applicability of a metal-organic framework that can protect enzymes so that they maintain high enzymatic activity. The long-term goal is to encapsulate specific enzymes that can be used for the detoxification of chemical-warfare agents.

Li et al.: "Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks" 10.1016/j.chempr.2016.05.001
For updates and table of content alerts, please sign up at

Cell Press (@CellPressNews), an imprint of Elsevier, is a leading publisher of scientific research and reviews. We drive science forward and promote cross-pollination of ideas with our passion for excellence and commitment to innovation. Our aim is to engage the scientific community by communicating important, exciting discoveries made today that will impact the future of research. Visit To receive Cell Press media alerts, contact

Cell Press

Related Enzymes Articles:

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.
Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.
Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.
While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.
Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.
New study looks to biological enzymes as source of hydrogen fuel
Research from the University of Illinois and the University of California, Davis has chemists one step closer to recreating nature's most efficient machinery for generating hydrogen gas.
How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.
How nature builds hydrogen-producing enzymes
A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
More Enzymes News and Enzymes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at