Nav: Home

A new biomarker for nerve cell damage

June 09, 2016

Scientists at the German Center for Neurodegenerative Diseases, the Hertie Institute for Clinical Brain Research and the University of Tübingen have identified proteins in the blood and cerebrospinal fluid that reflect nerve cell damage. The results of the study, published in the journal Neuron, suggest that the concentration of these 'neurofilament light chain proteins' could provide information about the progression of neurodegenerative diseases and the effects of treatment. Such a biomarker would be valuable for developing therapies.

"The results of our research indicate that disease progression can be tracked by monitoring the concentration of neurofilament light chain proteins. According to our study this is possible in both animal models and humans," says Mathias Jucker, who leads a research group at the DZNE's Tübingen site and is also a director of the Hertie Institute. "We have also found that the measured levels react sensitively when pathological hallmarks in the brain are influenced experimentally. It may thus be possible to evaluate the effect of a treatment by measuring the concentration of light neurofilaments, both in preclinical laboratory studies and in clinical trials. Such a biomarker would be a major benefit for developing treatments."

Parts of the cytoskeleton

"Neurofilament light chain proteins" are parts of the cytoskeleton that gives nerve cells shape and stability. These thread-like molecules are therefore mainly located inside cells, but may be released due to damage.

Professor Jucker and his colleagues - including Mehtap Bacioglu, first author of the current publication - took this known fact as the basis for investigating the concentration of neurofilament light chains proteins in the blood and cerebrospinal fluid (liquor). For this, they looked at mice that showed the typical features of neurodegenerative diseases, namely deposits of aggregated "alpha-synuclein", "tau" or "beta-amyloid" protein in their brains. Such deposits are associated with nerve cell damage. Besides, the scientists examined biomaterials from patients with Alzheimer's, Parkinson's and other neurodegenerative diseases.

Sensitive measurements

In mice, a close association was found between the concentration of neurofilament proteins in the liquor and blood. Moreover, the more advanced the brain damage, the higher the measured levels. If the neurological lesions were induced or inhibited protein levels increased or dropped accordingly. In patients, blood and liquor readings also correlated strongly. Furthermore, levels were higher than in healthy people.

A tool for developing treatments

"The special potential of this biomarker comes from the fact that it is significant in both animals and humans. Therefore, the results from animal models can be translated into clinical studies and their findings may be directly compared. This is critical for the development of new treatments," says Jucker. "What's more, we don't have to rely on withdrawals of liquor. The lumbar puncture required to obtain cerebrospinal fluid can be stressful for the person undergoing it. Our study shows that blood levels also provide information about neurodegeneration in the brain, because the concentrations of the neurofilaments in the blood and cerebrospinal fluid are closely coupled. A simple blood sample may therefore be sufficient when performing clinical studies on humans."
-end-
Original publication

„Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases", Mehtap Bacioglu, Luis F. Maia, Oliver Preische, Juliane Schelle, Anja Apel, Stephan A. Kaeser, Manuel Schweighauser, Timo Eninger, Marius Lambert, Andrea Pilotto, Derya Shimshek, Ulf Neumann, Philipp J. Kahle, Matthias Staufenbiel, Manuela Neumann, Walter Maetzler, Jens Kuhle, Mathias Jucker, Neuron, DOI: 10.1016/j.neuron.2016.05.018

DZNE - German Center for Neurodegenerative Diseases

Related Neurodegenerative Diseases Articles:

Study suggests a protein could play key role in neurodegenerative diseases
Research led by Queen Mary University of London and the University of Seville around one protein's role in regulating brain inflammation could improve our understanding of neurodegenerative diseases.
Beyond finding a gene: Same repeated stretch of DNA in three neurodegenerative diseases
Four different rare diseases are all caused by the same short segment of DNA repeated too many times, a mutation researchers call noncoding expanded tandem repeats.
Protein complex may help prevent neurodegenerative diseases
The protein complex NAC in the cell helps to prevent the aggregration of proteins associated with several neurodegenerative diseases.
Experimental Biology highlights -- Cancer, neurodegenerative diseases and medical news
Embargoed press materials are now available for the Experimental Biology (EB) 2019 meeting, to be held in Orlando April 6-9.
Circadian clock plays unexpected role in neurodegenerative diseases
Northwestern University researchers induced jet lag in a fruit fly model of Huntington disease and found that jet lag protected the flies' neurons.
Neurodegenerative diseases identified using artificial intelligence
Researchers have developed an artificial intelligence platform to detect a range of neurodegenerative disease in human brain tissue samples, including Alzheimer's disease and chronic traumatic encephalopathy.
Open-science model for drug discovery expands to neurodegenerative diseases
Parkinson's disease and Amyotrophic Lateral Sclerosis are the newest frontiers for open science drug discovery, a global movement led by academic scientists in Toronto that puts knowledge sharing and medication affordability ahead of patents and profits.
New stage in the development of corrective mechanisms for ischemia and neurodegenerative diseases
In the last decade, there has been a growing body of experimental data confirming that neural networks are the minimal functional unit of the nervous system.
Scientists from TU Dresden search for new methods to cure neurodegenerative diseases
Behavioural experiments confirm: Additional neurons improve brain function.
Using graphene to detect ALS, other neurodegenerative diseases
Graphene can determine whether cerebrospinal fluid comes from a person with ALS, MS or from someone without a neurodegenerative disease.
More Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.