Nav: Home

Proteome of an entire family

June 09, 2016

Scientists have won new knowledge on the molecular background of fat and energy metabolism disorders through a large-scale proteomic study with mice. The proteome is the entire set of proteins - in this case, proteins from the livers of mice. A research group specialising in proteomics, led by ETH Zurich Professor Ruedi Aebersold, and a group specialising in mitochondrial physiology and liver diseases, led by EPFL Professor Johan Auwerx, worked together on this ground-breaking project.

"As with humans, there are individual differences in mice; for example, in cholesterol metabolism or susceptibility to metabolic disorders such as fatty liver," says Evan Williams, one of the two lead authors of the study, which has been published in the latest edition of the scientific journal Science. Williams conducted the work as a doctoral student at EPFL and is now a postdoc at ETH Zurich. "Some of these differences could be explained genetically, but not all," he says.

Latest technique

The scientists compiled comprehensive protein data from a large group of mice to help them explain additional metabolic differences. They used a mass spectrometry measuring technique, known as SWATH-MS, developed in recent years by Aebersold's group at ETH Zurich. It allowed the researchers to measure the concentrations of a broad spectrum of liver proteins in the laboratory animals.

"It's much more complex to measure the set of proteins than to sequence the entire genome," explains Yibo Wu, postdoc in Aebersold's group and co-lead author of the study. "Using the SWATH-MS technique, it's possible to measure thousands of different proteins in hundreds of samples." In this case, the researchers measured 2,600 different proteins in the tissue samples. In order to conduct these proteome measurements, an extensive protein database is required; Wu has played a leading role in recent years in building up such a database for mouse proteins.

Proteome complements the genome

The examined cohort consisted of 40 mice strains that date back to the same two ancestors and are therefore closely related to each other. Identical groups of mice, each consisting of representatives from these 40 strains, were fed either a high-fat diet, junk food in human terms, or a healthy low-fat diet. Over a period of weeks, the scientists charted the conventional medical (physiological) data of the mice and tested, inter alia, their performance and how quickly they reduced their weight through physical activity. As the scientists expected, the animals responded in different ways to the high-fat foods. Some of the animals developed metabolic disorders, such as fatty liver, others did not.

For the evaluation, the researchers combined the physiological data with data for genome (DNA), transcriptome (RNA) and proteome. From this combined data they were able to characterise the role of several specific proteins in fat and energy metabolism more precisely. One of these is COX7A2L. In mice this protein is responsible for the formation of supercomplexes found in mitochondria (the cell's internal 'power plants'), as the researchers found out. These supercomplexes consist of more than 100 different proteins and are responsible for providing cells with the required energy in the appropriate form. Mice with too little COX7A2L protein can't provide sufficient amounts of available energy, which impacts adversely on the whole organism.

Application in personalised medicine

This study is the most comprehensive proteomic study to date using SWATH-MS in mammals. The technique developed by ETH Zurich scientists is also ready for use in cohort studies in humans: the researchers in Aebersold's group have generated a corresponding database for thousands of human proteins. "Like the mouse strains in this study, each patient with a disease is genetically different", says ETH Professor Aebersold. "The approach we used in the mouse cohort can now be applied one-for-one in research on human diseases, and particularly for personalized medicine."
-end-
Reference

Williams EG, Wu Y et al.: Systems proteomics and trans-omic integration illuminate new mechanisms in mitochondrial function. Science 9 June 2016, doi: 10.1126/science.aad0189 [http://dx.doi.org/10.1126/science.aad0189]

ETH Zurich

Related Physical Activity Articles:

The benefits of physical activity for older adults
New findings published in the Scandinavian Journal of Medicine & Science in Sports reveal how physically active older adults benefit from reduced risks of early death, breast and prostate cancer, fractures, recurrent falls, functional limitations, cognitive decline, dementia, Alzheimer's disease, and depression.
Physical activity may protect against new episodes of depression
Increased levels of physical activity can significantly reduce the odds of depression, even among people who are genetically predisposed to the condition.
Is physical activity always good for the heart?
Physical activity is thought to be our greatest ally in the fight against cardiovascular disease.
Physical activity in lessons improves students' attainment
Students who take part in physical exercises like star jumps or running on the spot during school lessons do better in tests than peers who stick to sedentary learning, according to a UCL-led study.
Physical activity may attenuate menopause-associated atherogenic changes
Leisure-time physical activity is associated with a healthier blood lipid profile in menopausal women, but it doesn't seem to entirely offset the unfavorable lipid profile changes associated with the menopausal transition.
Are US adults meeting physical activity guidelines?
The proportion of US adults adhering to the 'Physical Activity Guidelines for Americans' from the US Department of Health and Human Services didn't significantly improve between 2007 and 2016 but time spent sitting increased.
Children from disadvantaged backgrounds do less vigorous physical activity
Children from disadvantaged backgrounds and certain ethnic minority backgrounds, including from Pakistani and Bangladeshi backgrounds, have lower levels of vigorous physical activity, according to researchers at the University of Cambridge.
Light, physical activity reduces brain aging
Incremental physical activity, even at light intensity, is associated with larger brain volume and healthy brain aging.
Decline in physical activity often starts as early as age 7
Overall physical activity starts to decline already around the age of school entry.
Is it ever too late for adults to benefit from physical activity?
It may never be too late for adults to become physically active and enjoy some health benefits.
More Physical Activity News and Physical Activity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.