Nav: Home

In the brain, one area sees familiar words as pictures, another sounds out words

June 09, 2016

WASHINGTON -- Skilled readers can quickly recognize words when they read because the word has been placed in a visual dictionary of sorts which functions separately from an area that processes the sounds of written words, say Georgetown University Medical Center (GUMC) neuroscientists. The visual dictionary idea rebuts a common theory that our brain needs to "sound out" words each time we see them.

This finding, published online today in NeuroImage, matters because unraveling how the brain solves the complex task of reading can help in uncovering the brain basis of reading disorders, such as dyslexia, say the scientists.

"Beginning readers have to sound out words as they read, which makes reading a very long and laborious process," says the study's lead investigator, Laurie Glezer, PhD, a postdoctoral research fellow. The research was conducted in the Laboratory for Computational Cognitive Neuroscience at GUMC, led by Maximilian Riesenhuber, PhD.

"Even skilled readers occasionally have to sound out words they do not know. But once you become a fluent, skilled reader you no longer have to sound out words you are familiar with, you can read them instantly," Glezer explains. "We show that the brain has regions that specialize in doing each of the components of reading. The area that is processing the visual piece is different from the area that is doing the sounding out piece."

Glezer and her co-authors tested word recognition in 27 volunteers in two different experiments using fMRI. They were able to see that words that were different, but sound the same, like "hare" and "hair" activate different neurons, akin to accessing different entries in a dictionary's catalogue.

"If the sounds of the word had influence in this part of the brain we would expect to see that they activate the same or similar neurons, but this was not the case -- 'hair' and 'hare' looked just as different as 'hair' and 'soup.'"

Glezer says that this suggests that in this region of the brain all that is used is the visual information of a word and not the sounds. In addition, the researchers found a different distinct region that was sensitive to the sounds, where 'hair' and 'hare' did look the same.

"This suggests that one region is doing the visual piece and the other is doing the sound piece," explains Riesenhuber.

"One camp of neuroscientists believe that we access both the phonology and the visual perception of a word as we read them, and that the area or areas of the brain that do one, also do the other, but our study suggests this isn't the case," says Glezer.

Riesenhuber says that these findings might help explain why people with dyslexia have slower, more labored reading. "Because of phonological processing problems in dyslexia, establishing a finely tuned system that can quickly and efficiently learn and recognize words might be difficult or impossible," he says.
-end-
Other Georgetown authors include Guinevere Eden, DPhil, director of Georgetown's Center for the Study of Learning, and Xiong Jiang, PhD, director of the Cognitive Neuroimaging Laboratory, and Judy Kim. Additional authors include Megan Luetje and Eileen Napoliello of San Diego State University.

The authors report no personal financial interests related to the study. This study was funded by the National Science Foundation and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Georgetown University Medical Center

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.