Nav: Home

NIST's super quantum simulator 'entangles' hundreds of ions

June 09, 2016

BOULDER, Colo. - Physicists at the National Institute of Standards and Technology (NIST) have "entangled" or linked together the properties of up to 219 beryllium ions (charged atoms) to create a quantum simulator. The simulator is designed to model and mimic complex physics phenomena in a way that is impossible with conventional machines, even supercomputers. The techniques could also help improve atomic clocks.

The new NIST system can generate quantum entanglement in about 10 times as many ions as any previous simulators based on ions, a scale-up that is crucial for practical applications. The behavior of the entangled ions rotating in a flat crystal just 1 millimeter in diameter can also be tailored or controlled to a greater degree than before.

Described in the June 10, 2016, issue of Science, NIST's latest simulator improves on the same research group's 2012 version by removing most of the earlier system's errors and instabilities, which can destroy fragile quantum effects.

"Here we get clear, indisputable proof the ions are entangled," NIST postdoctoral researcher Justin Bohnet said. "What entanglement represents in this case is a useful resource for something else, like quantum simulation or to enhance a measurement in an atomic clock."

In the NIST quantum simulator, ions act as quantum bits (qubits) to store information. Trapped ions are naturally suited to studies of quantum physics phenomena such as magnetism.

Quantum simulators might also help study problems such as how the universe began, how to engineer novel technologies (for instance, room-temperature superconductors or atom-scale heat engines), or accelerate the development of quantum computers. According to definitions used in the research community, quantum simulators are designed to model specific quantum processes, whereas quantum computers are universally applicable to any desired calculation.

Quantum simulators with hundreds of qubits have been made of other materials such as neutral atoms and molecules. But trapped ions offer unique advantages such as reliable preparation and detection of quantum states, long-lived states, and strong couplings among qubits at a variety of distances.

In addition to proving entanglement, the NIST team also developed the capability to make entangled ion crystals of varying sizes--ranging from 20 qubits up to hundreds. Even a slight increase in the number of particles makes simulations exponentially more complex to program and carry out. The NIST team is especially interested in modelling quantum systems of sizes just beyond the classical processing power of conventional computers.

"Once you get to 30 to 40 particles, certain simulations become difficult," Bohnet said. "That's the number at which full classical simulations start to fail. We check that our simulator works at small numbers of ions, then target the sweet spot in this midrange to do simulations that challenge classical simulations. Improving the control also allows us to more perfectly mimic the system we want our simulator to tell us about."

The ion crystals are held inside a Penning trap, which confines charged particles by use of magnetic and electric fields. The ions naturally form triangular patterns, useful for studying certain types of mag-netism. NIST is the only laboratory in the world generating two-dimensional arrays of more than 100 ions. Based on lessons learned in the 2012 experiment, NIST researchers designed and assembled a new trap to generate stronger and faster interactions among the ions. The interaction strength is the same for all ions in the crystal, regardless of the distances between them.

The researchers used lasers with improved position and intensity control, and more stable magnetic fields, to engineer certain dynamics in the "spin" of the ions' electrons. Ions can be spin up (often envisioned as an arrow pointing up), spin down, or both at the same time, a quantum state called a super-position. In the experiments, all the ions are initially in independent superpositions but are not communicating with each other. As the ions interact, their spins collectively morph into an entangled state involving most, or all of the entire crystal.

Researchers detected the spin state based on how much the ions fluoresced, or scattered laser light. When measured, unentangled ions collapse from a superposition to a simple spin state, creating noise, or random fluctuations, in the measured results. Entangled ions collapse together when measured, reducing the detection noise.

Crucially, the researchers measured a sufficient level of noise reduction to verify entanglement, results that agreed with theoretical predictions. This type of entanglement is called spin squeezing because it squeezes out (removes) noise from a target measurement signal and moves it to another, less import-ant aspect of the system. The techniques used in the simulator might someday contribute to the development of atomic clocks based on large numbers of ions (current designs use one or two ions).

"The reduction in the quantum noise is what makes this form of entanglement useful for enhancing ion and atomic clocks," Bohnet said. "Here, spin squeezing confirms the simulator is working correctly, because it produces the quantum fluctuations we are looking for."
-end-
The work was funded in part by the National Science Foundation, Army Research Office and Air Force Office of Scientific Research.

Paper: J.G. Bohnet, B.C. Sawyer, J.W. Britton, M.L. Wall, A.M. Rey, M. Foss-Feig, and J.J. Bollinger. 2016. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science. June 10.

National Institute of Standards and Technology (NIST)

Related Quantum Computers Articles:

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.
Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.
Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.
FEFU scientists developed method to build up functional elements of quantum computers
Scientists from Far Eastern Federal University (FEFU, Vladivostok, Russia), together with colleagues from FEB RAS, China, Hong Kong, and Australia, manufactured ultra-compact bright sources based on IR-emitting mercury telluride (HgTe) quantum dots (QDs), the future functional elements of quantum computers and advanced sensors.
ORNL researchers advance performance benchmark for quantum computers
Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.
Quantum computers learn to mark their own work
A new test to check if a quantum computer is giving correct answers to questions beyond the scope of traditional computing could help the first quantum computer that can outperform a classical computer to be realised.
Blanket of light may give better quantum computers
Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.
One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
More Quantum Computers News and Quantum Computers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.