Nav: Home

New mode of action for streptomycin holds promise of treating drug-resistant infections

June 09, 2016

Researchers report in PLOS Biology the mechanism by which streptomycin, one of the oldest and most widely used antibiotics, penetrates into bacterial cells. The study performed by scientists at UT Southwestern Medical Center and their colleagues also reveals a potential way for developing new drugs to treat drug-resistant infections.

The co-lead authors are Robin Wray and Dr Irene Iscla, and co-corresponding authors are Drs Paul Blount and Junmei Wang, all from UT Southwestern Medical Center. The work was in collaboration with Dr Hua Li and Ya Gao from the School of Pharmacy at Tongji Medical College at Huazhong University of Science and Technology in China.

According to the World Health Organization (WHO), antibiotic and antimicrobial resistance is an increasingly serious threat to global public health. In this context, the group led by Dr Blount set out to identify compounds that would inhibit bacterial growth by altering the properties of the bacterial 'emergency release valve' -- the mechanosensitive channel MscL. MscL, a transmembrane protein with a pore, is found in the vast majority of bacterial species where it helps the cell to tolerate sudden decreases in external osmolarity by releasing solutes from inside the cell. Previous studies had shown that mutations in MscL, which led to a pore that opens more easily, were detrimental to bacterial growth. Surprisingly, Dr Blount and his colleagues found that the expression of MscL increased the potency of a variant of streptomycin, dihydrostreptomycin. These results were published in Nature Communications.

Because MscL is a channel and dihydrostreptomycin increase the flux of solutes when MscL was expressed, Dr Blount and his collaboration followed the hypothesis that dihydrostreptomycin could bind and open MscL.

In the current study, using a combination of biochemical, molecular, and computational approaches, the researchers found that dihydrostreptomycin binds to a specific site of MscL and modifies its conformation, allowing the flux of solutes out of, and, surprisingly, of dihydrostreptomycin into the cell. This discovery is quite remarkable.

Streptomycin has been studied for decades, and it is firmly established that it kills bacteria mostly by interfering with protein synthesis. However, the mechanisms by which this large, bulky, and charged antibiotic accesses the inside of the bacterial cell had remained unknown until now.

Although dihydrostreptomycin channel activation is insufficient by itself to effect slowed growth or cell death in bacterial cells resistant to streptomycin's activity on protein synthesis, it is clear that the drug does directly bind and modify the MscL channel pore. In addition to solving old mysteries, the study holds promise for the discovery of new antibiotics that target the MscL channel.

Dihydrostreptomycin now serves as the first definitive example where the direct and specific binding of a compound to the MscL channel can cause at least partial, if not full opening of the MscL channel pore. If a compound could be identified that led to the more complete opening of the MscL channel or held it open for longer periods of time, it would be a worthy antibacterial candidate.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.doi.org/10.1371/journal.pbio.1002473

Citation: Wray R, Iscla I, Gao Y, Li H, Wang J, Blount P (2016) Dihydrostreptomycin Directly Binds to, Modulates, and Passes through the MscL Channel Pore. PLoS Biol 14(6): e1002473. doi:10.1371/journal.pbio.1002473

Funding: The work was supported by Grant I-1420 of the Welch Foundation, Grant RP100146 from the Cancer Prevention & Research Institute of Texas, and GM061028 from the National Institutes of Health. II is supported by Grant 12SDG8740012 from the National American Heart Association. HL is supported by the National Natural Science Foundation of China Grant No. 81473254. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Antibiotics Articles:

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.
How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'
Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.
Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.
Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.
Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.
Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.
Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.
Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
More Antibiotics News and Antibiotics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.