Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

June 09, 2016

Future Martian explorers might not need to leave the Earth to prepare themselves for life on the Red Planet. The Mars Society have built an analogue research site in Utah, USA, which simulates the conditions on our neighbouring planet.

Practicing the methods needed to collect biological samples while wearing spacesuits, a team of Canadian scientists have studied the diverse local flora. Along with the lessons that one day will serve the first to conquer Mars, the researchers present an annotated checklist of the fungi, algae, cyanobacteria, lichens, and vascular plants from the station in their publication in the open-access journal Biodiversity Data Journal.

Located in the desert approximately 9 km outside of Hanksville, Utah, and about 10 km away from the Burpee Dinosaur Quarry, a recently described bone bed from the Jurassic Morrison Formation, the Mars Desert Research Station (MDRS) was constructed in 2002. Since then, it has been continuously visited by a wide range of researchers, including astrobiologists, soil scientists, journalists, engineers, and geologists.

Astrobiology, the study of the evolution and distribution of life throughout the universe, including the Earth, is a field increasingly represented at the MDRS. There, astrobiologists can take advantage of the extreme environment surrounding the station and seek life as if they were on Mars. To simulate the extraterrestrial conditions, the crew members even wear specially designed spacesuits so that they can practice standard field work activities with restricted vision and movement.

In their present research, the authors have identified and recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, 6 algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. Living in such extreme environments, organisms such as fungi, lichens, algae, and cyanobacteria are of particular interest to astrobiologists as model systems in the search for life on Mars.

However, the authors note that there is still field work to be executed at the site, especially during the spring and the summer so that the complete local diversity of the area can be captured.

"While our present checklist is not an exhaustive inventory of the MDRS site," they explain, "it can serve as a first-line reference for identifying vascular plants and lichens at the MDRS, and serves as a starting point for future floristic and ecological work at the station."
-end-
Original source:

Sokoloff P, Hamilton P, Saarela J (2016) The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah. Biodiversity Data Journal 4: e8176. doi: 10.3897/BDJ.4.e8176

Pensoft Publishers

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.