Nav: Home

Likely new planet may be in slow death spiral

June 09, 2016

HOUSTON -- (June 9, 2016) -- Astronomers searching for the galaxy's youngest planets have found compelling evidence for one unlike any other, a newborn "hot Jupiter" whose outer layers are being torn away by the star it orbits every 11 hours.

"A handful of known planets are in similarly small orbits, but because this star is only 2 million years old this is one of the most extreme examples," said Rice University astronomer Christopher Johns-Krull, lead author of a new study that makes a case for a tightly orbiting gas giant around the star PTFO8-8695 in the constellation Orion. The peer-reviewed study will be published in The Astrophysical Journal and was made available online this week.

"We don't yet have absolute proof this is a planet because we don't yet have a firm measure of the planet's mass, but our observations go a long way toward verifying this really is a planet," Johns-Krull said. "We compared our evidence against every other scenario we could imagine, and the weight of the evidence suggests this is one of the youngest planets yet observed."

Dubbed "PTFO8-8695 b," the suspected planet orbits a star about 1,100 light years from Earth and is at most twice the mass of Jupiter. The team that compiled the evidence was co-led by Johns-Krull and Lowell Observatory astronomer Lisa Prato and included 10 co-authors from Rice, Lowell, the University of Texas at Austin, NASA, the California Institute of Technology and Spain's National Institute of Aerospace.

"We don't know the ultimate fate of this planet," Johns-Krull said. "It likely formed farther away from the star and has migrated in to a point where it's being destroyed. We know there are close-orbiting planets around middle-aged stars that are presumably in stable orbits. What we don't know is how quickly this young planet is going to lose its mass and whether it will lose too much to survive."

Astronomers have discovered more than 3,300 exoplanets, but almost all of them orbit middle-aged stars like the sun. On May 26, Johns-Krull, Prato and co-authors announced the discovery of 'CI Tau b,' the first exoplanet found to orbit a star so young that it still retains a disk of circumstellar gas. Johns-Krull said finding such young planets is challenging because there are relatively few candidate stars that are young enough and bright enough to view in sufficient detail with existing telescopes. The search is further complicated by the fact that young stars are often active, with visual outbursts and dimmings, strong magnetic fields and enormous starspots that can make it appear that planets exist where they do not.

PTFO8-8695 b was identified as a candidate planet in 2012 by the Palomar Transit Factory's Orion survey. The planet's orbit sometimes causes it to pass between its star and our line of sight from Earth, therefore astronomers can use a technique known as the transit method to determine both the presence and approximate radius of the planet based on how much the star dims when the planet "transits," or passes in front of the star.

"In 2012, there was no solid evidence for planets around 2 million-year-old stars," Prato said. "Light curves and variations of this star presented an intriguing technique to confirm or refute such a planet. The other thing that was very intriguing about it was that the orbital period was only 11 hours. That meant we wouldn't have to come back night after night after night, year after year after year. We could potentially see something happen in one night. So that's what we did. We just sat on the star for a whole night."

A spectroscopic analysis of the light coming from the star revealed excess emission in the H-alpha spectral line, a type of light emitted from highly energized hydrogen atoms. The team found that the H-alpha light is emitted in two components, one that matches the very small motion of the star and another than seems to orbit it.

"We saw one component of the hydrogen emission start on one side of the star's emission and then move over to the other side," Prato said. "When a planet transits a star, you can determine the orbital period of the planet and how fast it is moving toward you or away from you as it orbits. So, we said, 'If the planet is real, what is the velocity of the planet relative to the star?' And it turned out that the velocity of the planet was exactly where this extra bit of H-alpha emission was moving back and forth."

Johns-Krull said transit observations revealed that the planet is only about 3 to 4 percent the size of the star, but the H-alpha emission from the planet appears to be almost as bright as the emission coming from the star.

"There's no way something confined to the planet's surface could produce that effect," he said. "The gas has to be filling a much larger region where the gravity of the planet is no longer strong enough to hold on to it. The star's gravity takes over, and eventually the gas will fall onto the star."

Additional team members were Wei Chen and Sarah Frazier, both of Rice; Jacob McLane of the University of Texas at Austin; David Ciardi and Julian van Eyken, both of NASA's Exoplanet Science Institute; Charles Beichman of NASA's Jet Propulsion Laboratory; Maria Morales-Calderón of Spain's National Institute of Aerospace Technology; and John Stauffer, Andrew Boden and Luisa Rebull, all of the California Institute of Technology.

The team observed the star PTFO8-8695 dozens of times from the University of Texas at Austin's McDonald Observatory near Fort Davis, Texas, and the Kitt Peak National Observatory 4-meter telescope in southern Arizona.
-end-
The research was supported by NASA's Origins of Solar Systems program, the National Science Foundation and the NAU/NASA Space Grant Undergraduate Research Internship program.

High-resolution IMAGES are available for download at:

http://news.rice.edu/files/2016/06/0609_PLANET2-PTFO8-b-lg-rfavdj.jpg
CAPTION: An artist's impression of likely new giant planet PTFO8-8695 b, which is believed to orbit a star in the constellation Orion every 11 hours. Gravity from the newborn star appears to be pulling away the outer layers of the Jupiter-like planet. (Image by A. Passwaters/Rice University based on original available under CC license at https://commons.wikimedia.org/wiki/File:Kepler-70b.png)

http://news.rice.edu/files/2016/06/0609_PLANET2-mayall-lg-vvl8ol.jpg
CAPTION: The Orion constellation as seen over the Mayall 4-meter Telescope on Kitt Peak. (Image courtesy of J. Glaspey/NOAO/AURA/NSF)

https://mcdonaldobservatory.org/news/gallery/smith-telescope-colorful-clouds
CAPTION: Astronomers used the Harlan J. Smith Telescope at the University of Texas at Austin's McDonald Observatory near Fort Davis, Texas, to search for planet PTFO8-8695 b. (Image courtesy of Ethan Tweedie Photography)

http://news.rice.edu/files/2016/05/0525_PLANET-cmjk-lg-12wbufn.jpg
CAPTION: Christopher Johns-Krull (Photo by Jeff Fitlow/Rice University)

http://news.rice.edu/files/2016/05/0525_PLANET-prato-med-2e340rk.jpg
CAPTION: Lisa Prato (Image courtesy of L. Prato/Lowell Observatory)

The study and research data are available at: http://arxiv.org/abs/1606.02701

Related planet-hunting research from Rice:

Astronomers find giant planet around very young star -- May 26, 2016

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Planets Articles:

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
Icy giant planets in the laboratory
Giant planets like Neptune may contain much less free hydrogen than previously assumed.
New NASA mission could find more than 1,000 planets
A NASA telescope that will give humans the largest, deepest, clearest picture of the universe since the Hubble Space Telescope could find as many as 1,400 new planets outside Earth's solar system, new research suggests.
Giant planets around young star raise questions about how planets form
Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system.
More Planets News and Planets Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.