Nav: Home

Test holds potential to diagnose myriad conditions with drop of blood

June 09, 2016

PITTSBURGH, June 9, 2016 - Researchers at the University of Pittsburgh have developed a unique method for detecting antibodies in the blood of patients in a proof-of-principle study that opens the door to development of simple diagnostic tests for diseases for which no microbial cause is known, including auto-immune diseases, cancers and other conditions.

The results, reported in the Journal of Immunological Methods and funded by the Bill & Melinda Gates Foundation, are the first evidence that it is possible to develop blood tests for any infectious disease by screening random libraries of non-biological molecular shapes.

"This 'needle-in-a-molecular haystack' approach is a new way to develop diagnostic assays," said senior author Donald S. Burke, M.D., Pitt Graduate School of Public Health dean and director of Pitt's Center for Vaccine Research. "The method does not rely on starting with known viral components. This is important because there are conditions for which there isn't a known antigen, such as newly emerged epidemics, autoimmune diseases or even responses to traumatic injury."

When a person's immune system is faced with an antigen or foreign invader, such as an infectious disease, or even an injury with tissue damage, it responds by producing antibodies. Like puzzle pieces, specific parts of the surface of these antibodies fit to the shape of the molecules on the invader or the damaged tissue.

The Pitt researchers used a technique pioneered by co-author Thomas Kodadek, Ph.D., of the Scripps Research Institute, that synthesizes random molecular shapes called "peptoids" hooked onto microscopic plastic beads. The technique can produce millions of molecular shapes. The peptoids are not organic, but if they match to the corresponding shape on an antibody, that antibody will connect to them, allowing the scientist to pull out that bead and examine that peptoid and its corresponding antibody.

Using this technique, Dr. Burke's team chemically generated a huge library of random molecular shapes. Then, using blood from HIV-infected patients and from non-infected people, the researchers screened a million of these random molecular shapes to find the ones that bound only to antibodies present in the blood of HIV-infected patients, but not the healthy controls. No HIV proteins or structures were used to construct or select the peptoids, but the approach, nonetheless, successfully led to selection of the best molecular shapes to use in screening for HIV antibodies.

The team then resynthesized that HIV-antibody-targeting peptoid in mass and tested it by screening hundreds of samples from the Multicenter AIDS Cohort Study (MACS), a confidential research study of the natural history of treated and untreated HIV/AIDS in men who have sex with men (supported by the National Institutes of Health). Study co-author Charles Rinaldo, Ph.D., chair of Pitt Public Health's Department of Infectious Diseases and Microbiology and director of the Pittsburgh arm of the MACS, selected the samples, but blinded the testers to which samples were HIV-positive or -negative. The test distinguished between the samples of HIV-positive blood and HIV-negative blood with a high degree of accuracy.

"This technology means that we may be able to take a single drop of blood from a patient and detect antibodies to all manner of infections, cancers or other conditions they may be carrying or been exposed to. We hope that this is the first step toward development of an 'Epi-chip' that can be used to reconstruct a person's entire exposure history," said Dr. Burke, who also holds the UPMC-Jonas Salk Chair of Global Health at Pitt.
-end-
Additional co-authors on this study are Tricia L. Gearhart, Ph.D., Ronald C. Montelaro, Ph.D., Mark E. Schurdak, Ph.D., Yongseok Park, Ph.D., Kazi Islam, Raymond Yurko and Ernesto T.A. Marques Jr., M.D., Ph.D., all of Pitt; and Chris D. Pilcher, M.D., of the University of California, San Francisco.

This work was funded by Bill & Melinda Gates Foundation grant OPP1068374. In addition to the MACS, the Consortium for the Evaluation and Performance of HIV Incidence Assays also provided blood samples.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.

http://www.upmc.com/media

Contact: Wendy Zellner
Phone: 412-586-9777
E-mail: ZellnerWL@upmc.edu

Contact: Allison Hydzik
Phone: 412-647-9975
E-mail: HydzikAM@upmc.edu

University of Pittsburgh Schools of the Health Sciences

Related Infectious Disease Articles:

Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.
What makes some people more receptive to the idea of being vaccinated against infectious disease?
Fear, trust, and the likelihood of exposure are three leading factors that influence whether people are willing to be vaccinated against a virulent disease, according to a new study in the journal Heliyon, published by Elsevier.
Can we feed 11 billion people while preventing the spread of infectious disease?
A new article published in Nature Sustainability describes how the increase in population and the need to feed everyone will give rise to human infectious disease, a situation the authors of the paper consider 'two of the most formidable ecological and public health challenges of the 21st century.'
Coat of proteins makes viruses more infectious and links them to Alzheimer's disease
New research from Stockholm University and Karolinska Institutet shows that viruses interact with proteins in the biological fluids of their host which results in a layer of proteins on the viral surface.
Climate change responsible for severe infectious disease in UK frogs
Climate change has already increased the spread and severity of a fatal disease caused by Ranavirus that infects common frogs (Rana temporaria) in the UK, according to research led by ZSL's Institute of Zoology, UCL and Queen Mary University of London published today in Global Change Biology.
More Infectious Disease News and Infectious Disease Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...