Nav: Home

Test holds potential to diagnose myriad conditions with drop of blood

June 09, 2016

PITTSBURGH, June 9, 2016 - Researchers at the University of Pittsburgh have developed a unique method for detecting antibodies in the blood of patients in a proof-of-principle study that opens the door to development of simple diagnostic tests for diseases for which no microbial cause is known, including auto-immune diseases, cancers and other conditions.

The results, reported in the Journal of Immunological Methods and funded by the Bill & Melinda Gates Foundation, are the first evidence that it is possible to develop blood tests for any infectious disease by screening random libraries of non-biological molecular shapes.

"This 'needle-in-a-molecular haystack' approach is a new way to develop diagnostic assays," said senior author Donald S. Burke, M.D., Pitt Graduate School of Public Health dean and director of Pitt's Center for Vaccine Research. "The method does not rely on starting with known viral components. This is important because there are conditions for which there isn't a known antigen, such as newly emerged epidemics, autoimmune diseases or even responses to traumatic injury."

When a person's immune system is faced with an antigen or foreign invader, such as an infectious disease, or even an injury with tissue damage, it responds by producing antibodies. Like puzzle pieces, specific parts of the surface of these antibodies fit to the shape of the molecules on the invader or the damaged tissue.

The Pitt researchers used a technique pioneered by co-author Thomas Kodadek, Ph.D., of the Scripps Research Institute, that synthesizes random molecular shapes called "peptoids" hooked onto microscopic plastic beads. The technique can produce millions of molecular shapes. The peptoids are not organic, but if they match to the corresponding shape on an antibody, that antibody will connect to them, allowing the scientist to pull out that bead and examine that peptoid and its corresponding antibody.

Using this technique, Dr. Burke's team chemically generated a huge library of random molecular shapes. Then, using blood from HIV-infected patients and from non-infected people, the researchers screened a million of these random molecular shapes to find the ones that bound only to antibodies present in the blood of HIV-infected patients, but not the healthy controls. No HIV proteins or structures were used to construct or select the peptoids, but the approach, nonetheless, successfully led to selection of the best molecular shapes to use in screening for HIV antibodies.

The team then resynthesized that HIV-antibody-targeting peptoid in mass and tested it by screening hundreds of samples from the Multicenter AIDS Cohort Study (MACS), a confidential research study of the natural history of treated and untreated HIV/AIDS in men who have sex with men (supported by the National Institutes of Health). Study co-author Charles Rinaldo, Ph.D., chair of Pitt Public Health's Department of Infectious Diseases and Microbiology and director of the Pittsburgh arm of the MACS, selected the samples, but blinded the testers to which samples were HIV-positive or -negative. The test distinguished between the samples of HIV-positive blood and HIV-negative blood with a high degree of accuracy.

"This technology means that we may be able to take a single drop of blood from a patient and detect antibodies to all manner of infections, cancers or other conditions they may be carrying or been exposed to. We hope that this is the first step toward development of an 'Epi-chip' that can be used to reconstruct a person's entire exposure history," said Dr. Burke, who also holds the UPMC-Jonas Salk Chair of Global Health at Pitt.
-end-
Additional co-authors on this study are Tricia L. Gearhart, Ph.D., Ronald C. Montelaro, Ph.D., Mark E. Schurdak, Ph.D., Yongseok Park, Ph.D., Kazi Islam, Raymond Yurko and Ernesto T.A. Marques Jr., M.D., Ph.D., all of Pitt; and Chris D. Pilcher, M.D., of the University of California, San Francisco.

This work was funded by Bill & Melinda Gates Foundation grant OPP1068374. In addition to the MACS, the Consortium for the Evaluation and Performance of HIV Incidence Assays also provided blood samples.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.

http://www.upmc.com/media

Contact: Wendy Zellner
Phone: 412-586-9777
E-mail: ZellnerWL@upmc.edu

Contact: Allison Hydzik
Phone: 412-647-9975
E-mail: HydzikAM@upmc.edu

University of Pittsburgh Schools of the Health Sciences

Related Infectious Disease Articles:

Archaeology uncovers infectious disease spread - 4000 years ago
New bioarchaeology research from a University of Otago PhD candidate has shown how infectious diseases may have spread 4000 years ago, while highlighting the dangers of letting such diseases run rife.
Lack of continuous infectious disease pandemic research endangers responses
The coronavirus was also studied considerably less than blood borne viruses like Hepatitis B or C and H.I.V. and its research community has less prolific researchers than the other investigated diseases.
For patients with sepsis, an infectious disease expert may reduce the risk of death
When people with severe sepsis, an extreme overreaction by the body to a serious infection, come to the emergency room (ER), they require timely, expert care to prevent organ failure and even death.
Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.
What makes some people more receptive to the idea of being vaccinated against infectious disease?
Fear, trust, and the likelihood of exposure are three leading factors that influence whether people are willing to be vaccinated against a virulent disease, according to a new study in the journal Heliyon, published by Elsevier.
Can we feed 11 billion people while preventing the spread of infectious disease?
A new article published in Nature Sustainability describes how the increase in population and the need to feed everyone will give rise to human infectious disease, a situation the authors of the paper consider 'two of the most formidable ecological and public health challenges of the 21st century.'
Climate change responsible for severe infectious disease in UK frogs
Climate change has already increased the spread and severity of a fatal disease caused by Ranavirus that infects common frogs (Rana temporaria) in the UK, according to research led by ZSL's Institute of Zoology, UCL and Queen Mary University of London published today in Global Change Biology.
New research framework may help better understand, predict infectious disease risks
University of South Florida-led research identifies individual hosts more or less likely to escalate outbreaks.
Researchers study bacterial immunity to understand infectious disease
Patients with cystic fibrosis are often infected by pseudomonas aeruginosa, a bacterium that infects the lungs and prevents breathing, often causing death.
National Academies target opioid abuse and infectious disease consequences
The National Academies of Sciences, Engineering, and Medicine today released proceedings of a March 12 workshop exploring the rise in infectious diseases accompanying opioid abuse, and possible strategies for reducing both epidemics.
More Infectious Disease News and Infectious Disease Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.