Nav: Home

New molecules identified that could help in the fight to prevent cystic fibrosis

June 09, 2016

New research has identified new molecules that could help in the fight to prevent diseases caused by faulty ion channels, such as cystic fibrosis.

Ion channels are proteins found in a cell's membrane, which create tiny openings in the membrane that regulate the movement of specific ions. Defective ion channels are the underlying cause of many diseases, notably cystic fibrosis, in which the transport of chloride ions is impaired.

Synthetic transporters that can carry chloride through lipid-bilayer membranes have been developed that could potentially replace the function of faulty channels. However, these transporters may also carry protons or hydroxide ions, which could disrupt pH homeostasis in the human body and lead to undesired toxic effects.

The new study involving an international team of researchers, published in the journal Chem, is the first to show examples of anion transporters with a high selectivity for chloride over protons and hydroxide. The researchers first demonstrated that proton/hydroxide transport is an overlooked side effect of synthetic anion transporters that were previously assumed to just carry anions. To address this problem, the researchers synthesised two new molecules that showed high selectivity for carrying chloride ions over protons and hydroxide. One of these compounds enabled chloride transport in real cells without seriously affecting lysosomal pH.

Lead author and PhD student, Xin Wu from the University of Southampton, said: "These new findings represent a paradigm shift for transporter design and provide important clues on how to develop anion transporters for different biomedical applications. We showed that different classes of anion transporters can have different behaviour in regulating ion gradients, membrane potential and pH gradients in cells. You need to pick the right molecule to have the desired biological effect for treating a certain disease."

Co-author and Xin's supervisor Professor Phil Gale, Head of Chemistry at the University of Southampton, said: "We demonstrated the possibility to develop molecules to replace the function of chloride channels without disrupting pH homeostasis. This is a significant step toward real biomedical application of anion transporters in the battle against cystic fibrosis and other diseases caused by faulty ion channels."
-end-
The study involved researchers from the University of Bristol, Universitat de Barcelona (Spain) and Xiamen University (China). It was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Spanish government, the EU, and the La Marato? de TV3 Foundation.

University of Southampton

Related Cystic Fibrosis Articles:

Cystic fibrosis: why so many respiratory complications?
Cystic fibrosis, one of the most common genetic diseases in Switzerland, causes severe respiratory and digestive disorders.
A newly discovered disease may lead to better treatment of cystic fibrosis
Cystic fibrosis is the most frequent severe inherited disorder worldwide.
New treatment kills off infection that can be deadly to cystic fibrosis patients
The findings, which are published in the journal Scientific Reports, show that scientists from Aston University, Mycobacterial Research Group, combined doses of three antibiotics -- amoxicillin and imipenem-relebactam and found it was 100% effective in killing off the infection which is usually extremely difficult to treat in patients with cystic fibrosis.
Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.
Modifier gene may explain why some with cystic fibrosis are less prone to infection
People with cystic fibrosis who carry genetic variants that lower RNF5 gene expression have more mutant CFTR protein on cell surfaces.
Rare mutations drive cystic fibrosis in Caribbean
Cystic Fibrosis (CF) in the Caribbean is dominated by unusual gene mutations not often observed in previously studied CF populations, according to comprehensive genome sequencing led by physician-scientists at UC San Francisco and Centro de Neumología Pediátrica in San Juan.
Cystic fibrosis carriers at increased risk of digestive symptoms
Researchers have found that carriers of the most common genetic variant that causes cystic fibrosis experience some symptoms similar to those of people with cystic fibrosis.
In cystic fibrosis, lungs feed deadly bacteria
A steady supply of its favorite food helps a deadly bacterium thrive in the lungs of people with cystic fibrosis, according to a new study by Columbia researchers.
Cibio knocks out cystic fibrosis
The fight against cystic fibrosis continues, targeting in particular some of the mutations that cause it.
Hypertonic saline may help babies with cystic fibrosis breathe better
Babies with cystic fibrosis may breathe better by inhaling hypertonic saline, according to a randomized controlled trial conducted in Germany and published in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.
More Cystic Fibrosis News and Cystic Fibrosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.