Analogue quantum computation has been universally digitized using superconducting circuits

June 09, 2016

The QUTIS group, led by the Ikerbasque professor Enrique Solano, is a world leader in theoretical proposals for quantum simulation and quantum computation with superconducting circuits and other quantum technologies, which are carried out and verified at major international scientific and technological labs. The American company Google has one of the most advanced labs in this field and is a world leader in this technology.

The UPV/EHU team that conducted this work was led by Prof. Enrique Solano and Dr. Lucas Lamata. And the Google team was led by Prof. John Martinis, Dr. Hartmut Neven, Dr. Rami Barends and Dr. Alireza Shabani.

Digital quantum computation splits up the problem to be resolved in terms of quantum logic gates in a way similar to that of a conventional computer. Analogue quantum computation, by contrast, consists of a continuous dynamics to get to the optimal solution of the problem. This dynamics can be slow, as is the case of adiabatic quantum computing based on so-called quantum annealing. What is more, superconducting quantum bits are devices that behave efficiently at very low temperatures that are achieved in advanced laboratories. In this pioneering experiment superconducting quantum bits were used to digitize an analogue quantum computer in a way similar to what is done with communication signals in conventional technologies. To do this, the problem was split up into a sequence of quantum logic gates, and quantum computation with the greatest complexity so far was achieved: over 1,000 logic gates operating on 9 quantum bits. This strategy will enable optimization problems to be universally solvable; they are useful in fields as general as finance, and also in the design of new materials and products for the pharmaceutical industry.

This breakthrough has come at a key moment for Europe as Brussels is expected shortly to be announcing the investment it will be making over the coming years in quantum technology research and development. Countries such as the United States, Japan, China, Australia and Canada are already investing huge economic resources in these areas with a global strategic framework. Among other things, quantum technologies will enable computer performance to be improved, progress to be made in machine learning and communication security to be reinforced.
-end-
Bibliographical reference

R. Barends et al., Digitized adiabatic quantum computing with a superconducting circuit, Nature, doi:10.1038/nature17658

University of the Basque Country

Related Quantum Technologies Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Scientists create new device to light up the way for quantum technologies
Researchers at CRANN and the School of Physics at Trinity College Dublin, Ireland, have created an innovative new device that will emit single particles of light, or photons, from quantum dots that are the key to practical quantum computers, quantum communications, and other quantum devices.

Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

A phase battery for quantum technologies
The work has been published today in the prestigious journal Nature Nanotechnology and has been led by the groups of Francesco Giazotto (NEST-CNR Institute, Pisa) and Sebastian Bergeret (CFM, CSIC-UPV/EHU, DIPC, Donostia / San Sebastian), with the collaboration of Salerno University.

Read More: Quantum Technologies News and Quantum Technologies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.