National survey shows different bacteria on cell phones and shoes

June 09, 2020

The largest study of its kind in the U.S. shows thousands of different types of bacteria living on cell phones and shoes, including groups that have barely been studied by scientists.

"This highlights how much we have to learn about the microbial world around us," said David Coil, a researcher at the University of California, Davis Genome Center and first author on the paper, published June 9 in the journal PeerJ.

In recent years scientists have started to better understand the communities of microbes, or microbiomes, found in basically every environment on the planet. We all carry around with us our own personal microbiome. While some of the microbes found in and on people can be harmful, the overwhelming majority of these microbes are harmless -- and some are even beneficial.

In 2013-2014, Coil, with Russell Neches and Professor Jonathan Eisen of the UC Davis Genome Center, UC Davis graduate student and professional cheerleader Wendy Brown, Darlene Cavalier of Science Cheerleaders, Inc. and colleagues launched an effort to sample microbes from spectators at sporting events across the country. Volunteers swabbed cell phones and shoes from almost 3,500 people and sent the samples to the Argonne National Laboratory, University of Chicago, for processing.

The researchers amplified and sequenced DNA from the samples and used the sequence information to identify major groups of bacteria in the samples.

They found that shoes and cell phones from the same person consistently had distinct communities of microbes. Cell phone microbes reflected those found on people, while shoes carried microbes characteristic of soil. This is consistent with earlier results.

The shoe microbes were also more diverse than those found on a person's phone.

Although samples were collected at events across the country, the researchers did not find any conclusive regional trends. In some cases, there were big differences between samples collected at different events in the same city. In others, samples from distant cities looked quite similar.

Microbial dark matter

Surprisingly, a substantial proportion of the bacteria came from groups that researchers call "microbial dark matter." These microbes are difficult to grow and study in a lab setting and thus have been compared to invisible "dark matter" that astronomers think makes up much of the universe.

Since they are so difficult to grow in a lab, these dark matter groups have only been discovered as scientists have used genetic sequencing technology to look for microbes in the world around us. Although many of the dark microbial groups come from remote or extreme environments, such as boiling acid springs and nutrient poor underground aquifers, some have been found in more mundane habitats, such as soil.

"Perhaps we were naïve, but we did not expect to see such a high relative abundance of bacteria from these microbial dark matter groups on these samples," Eisen said.

A number of these dark microbe groups were found in more than 10 percent of samples, with two groups, Armatimonadetes and Patescibacteria, being found in almost 50 percent of swabs and somewhat more frequently in those from shoes than those from phones. Armatimonadetes is known to be widespread in soil.

"A remarkable fraction of people are traveling around with representatives from these uncultured groups on commonplace objects," Coil said.
Additional authors on the paper are: at UC Davis, Jenna Lang and Guillaume Jospin; Jarrad Hampton-Marcell, Argonne National Laboratory; and Jack Gilbert, UC San Diego School of Medicine. The study was funded by the Alfred P. Sloan Foundation.

University of California - Davis

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to