Nav: Home

Strahl lab decodes another piece of the histone code puzzle

June 09, 2020

Inside our cells, DNA is tightly packed and spooled around proteins called histones. Packaging DNA in this way allows large amounts of genetic material to exist inside the cell in a final form called chromatin. Tiny enzymes modify the histones to make sure the genes that are part of the DNA can be accessed and precisely regulated. The result of this is proper gene expression and the production of proteins important for cell function and human health. When this process goes awry, the result can be diseases such as cancers.

The lab of Brian Strahl, PhD, interim chair of the UNC Department of Biochemistry and Biophysics, has been studying this process for years and has now revealed another piece of an intricate epigenetic puzzle - how one enzyme can lead to slightly different chemical modifications that control distinct biological functions important for gene expression and the repair of DNA.

Published in the journal Cell Reports, this research reinforces the notion that the multiple chemical modifications placed on histones by a single enzyme ensures multiple and distinct functions - an idea that was postulated by Strahl and his former mentor, David Allis, PhD, and was called the Histone Code hypothesis.

The Histone Code is important for genome function, yet the rules that govern the code are not fully deciphered. One of the early findings in the field of epigenetics was that a class of enzymes called histone methyltransferases can add a chemical modification multiple times on a single amino acid residue of a histone.

The process by which a histone methyltransferase adds this chemical modification is called methylation. The methyltransferase adds one carbon atom and three hydrogen atoms - a so-called 'methyl group' to a specific amino acid reside of a histone. This process can occur once, twice, or three times on a single amino acid residue, creating different "flavors" of methylation.

A major question in the field had been: do different "flavors" of methylation have the same or distinct biological functions on, say, gene expression important for the maintenance of healthy cells? While other studies had explored this idea for some histone sites that are methylated, many locations of histone methylation had not been investigated.

To answer this question, first author Julia DiFiore, PhD, a graduate student in the Strahl lab at the time of this research, genetically engineered one such methyltransferase called Set2 so it could perform only select flavors of methylation on its amino acid within histones. By achieving this high degree of specificity, the researchers could finally test if the different degrees of methylation at this site have the same or distinct functions.

"We found there are indeed unique functions, as well as shared functions, in gene expression and in DNA repair," Strahl said. "Our findings help to uncover the potential for different methylation states on histones to regulate diverse chromatin functions."

In addition to understanding fundamental cellular processes, "This work could also explain how dysregulation of enzymes such as Set2 might lead to incorrect 'flavors' of methylation to cause human disease," said Strahl, an Oliver Smithies Investigator at the UNC School of Medicine and member of the UNC Lineberger Cancer Center.

One process they examined was how stress conditions - specifically nutrient stress - affects gene expression. Strahl's group observed that when no methylation on the histone H3K36 was present, gene expression was very different than when normal amounts of methylation were present during nutrient stress. Interestingly, they observed that having only two or only three methyl groups (also called di- and trimethylation) had exactly the same effect as having all three types of methylation that are normally present.

DiFiore explained, "During nutrient stress, the overlapping roles of di- and trimethylation help provide flexibility to dynamic processes and better allow the cell to respond to stress." Being able to quickly respond to stress allows the cells to grow and function properly even under less than ideal conditions.

In future studies, Strahl's lab will examine the functions of the different forms of this methylation event in other important cellular contexts and in other model systems including human cells. They hope to put their findings into a broader context of how histone methylation functions and if the inappropriate changes found with these methylation events in human diseases, such as cancers, are behind how these diseases are formed.
-end-
Other authors are Travis Ptacek, PhD, Yi Wang, PhD, Bing Li, PhD, and Jeremy Simon, PhD.

University of North Carolina Health Care

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.