Nav: Home

Armor on butterfly wings protects against heavy rain

June 09, 2020

ITHACA, N.Y. - An analysis of high-speed raindrops hitting biological surfaces such as feathers, plant leaves and insect wings reveals how these highly water-repelling veneers reduce the water's impact.

Micro-bumps and a nanoscale wax layer on fragile butterfly wings shatter and spread raindrops to minimize damage.

The study, "How a Raindrop Gets Shattered on Biological Surfaces," published June 8 in the Proceedings of the National Academy of Sciences.

The research showed how microscale bumps, combined with a nanoscale layer of wax, shatter and spread these drops to protect fragile surfaces from physical damage and hypothermia risk.

There already exists a large market for products that use examples from nature - known as biomimicry - in their design: self-cleaning water-resistant sprays for clothes and shoes, and de-icing coatings on airplane wings. Findings from this study could lead to more such products in the future.

"This is the first study to understand how high-speed raindrops impact these natural hydrophobic surfaces," said senior author Sunghwan "Sunny" Jung, associate professor of biological and environmental engineering in the College of Agriculture and Life Sciences. The lead author is Seungho Kim, a postdoctoral researcher in Jung's lab.

Previous studies have looked at water hitting insects and plants at low impacts and have noted the liquid's cleaning properties. But in nature, raindrops can fall at rates of up to 10 meters per second, so this research examined how raindrops falling at high speeds interact with super-hydrophobic natural surfaces.

Raindrops pose risks, Jung said, because their impact could damage fragile butterfly wings, for example.

"[Getting hit with] raindrops is the most dangerous event for this kind of small animal," he said, noting the relative weight of a raindrop hitting a butterfly wing would be analogous to a bowling ball falling from the sky on a human.

In the study, the researchers collected samples of leaves, feathers and insects. The latter were acquired from the Cornell University Insect Collection, with the help of co-author Jason Dombroskie, collection manager and director of the Insect Diagnostic Lab.

The researchers placed the samples on a table and released water drops from heights of about two meters, while recording the impact at a few thousand frames per second with a high-speed camera.

In analyzing the film, they found that when a drop hits the surface, it ripples and spreads. A nanoscale wax layer repels the water, while larger microscale bumps on the surface creates holes in the spreading raindrop.

"Consider the micro-bumps as needles," Jung said. If one dropped a balloon onto these needles, he said, "then this balloon would break into smaller pieces. So the same thing happens as the raindrop hits and spreads."

This shattering action reduces the amount of time the drop is in contact with the surface, which limits momentum and lowers the impact force on a delicate wing or leaf. It also reduces heat transfer from a cold drop. This is important because the muscles of an insect wing, for example, need to be warm enough to fly.

"If they have a longer time in contact with the cold raindrop, they're going to lose a lot of heat and they cannot fly very easily," Jung said, making them vulnerable to predators, for example.

Repelling water as quickly as possible also is important because water is very heavy, making flight in insects and birds difficult and weighing down plant leaves.

"By having these two-tiered structures," Jung said, "[these organisms] can have a super hydrophobic surface."
-end-
The study was funded by the National Science Foundation and the U.S. Department of Agriculture.

Cornell University

Related Insects Articles:

A robot to track and film flying insects
French scientists have developed the first cable-driven robot that can follow and interact with free-flying insects.
Dramatic loss of food plants for insects
Just a few weeks ago, everyone was talking about plummeting insect numbers.
The brains of shrimps and insects are more alike than we thought
Crustaceans share a brain structure known to be crucial for learning and memory in insects, a University of Arizona-led research team discovered.
Freshwater insects recover while spiders decline in UK
Many insects, mosses and lichens in the UK are bucking the trend of biodiversity loss, according to a comprehensive analysis of over 5,000 species led by UCL and the UK Centre for Ecology & Hydrology (UKCEH), and published in Nature Ecology & Evolution.
Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.
Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.
Helpful insects and landscape changes
We might not notice them, but the crops farmers grow are protected by scores of tiny invertebrate bodyguards.
New information on tropical parasitoid insects revealed
The diversity and ecology of African parasitoid wasps was studied for over a year during a project run by the Biodiversity Unit of the University of Turku in Finland.
Insects need empathy
In February, environmentalists in Germany collected 1.75 million signatures for a 'save the bees law.' Citizens can stop insect declines by halting habitat loss and fragmentation, producing food without pesticides and limiting climate change, say the authors of this Perspectives piece in Science.
Migratory hoverflies 'key' as many insects decline
Migratory hoverflies are 'key' to pollination and controlling crop pests amid the decline of many other insect species, new research shows.
More Insects News and Insects Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.