Nav: Home

Novel DNA analysis will help to identify food origin and counterfeit food in the future

June 09, 2020

Estonian scientists are developing a DNA-based method of analysis that enables them to identify food components and specify the origin of a foodstuff.

Bioinformatics specialists at the University of Tartu, in cooperation with the Competence Centre on Health Technologies, have published a research paper in the journal Frontiers in Plant Science in which they indicated the possibility to identify components in thermally processed food using DNA analysis even if the quantities were very small. The scientists analysed thermally processed cookies that contained a small amount of lupin flour. The DNA analysis provided reliable identification of lupin even when the lupin flour content in the dough was just 0.02%.

Food always contains the DNA traces of the plants, animals and microorganisms that have been used or that the food or its raw materials have come into contact with in the production process. DNA analysis can provide valuable information on the content, origin, safety and health benefits of food and will make the identification of counterfeit foods and non-compliances in the ingredients specified on the packaging more reliable in the future. For example, certain cases gained attention last year in which the origin of honey and the authenticity of Estonian honey needed verification. The novel DNA analysis would make it possible to solve such issues.

According to Kairi Raime, the lead author of the article, Research Fellow of Bioinformatics at the Institute of Molecular and Cell Biology and a doctoral student at the University of Tartu, their method is a major step forward in the development of DNA-based methods for food analysis. "Our method helps to identify the actual biological contents and origins of food via DNA information and thus ensures the safety and authenticity of the food," she explained. Raime is planning to defend her PhD dissertation on the topic.

The DNA may be significantly degraded in processed food. Scientists extracted DNA from the cookies and analysed it using DNA sequencing technology. For the analysis of a single biscuit, approximately 20 million DNA sequences were obtained. Based on these, and by using bioinformatic analysis, it was possible to specify the DNA of the species found in the sample analysed. The main issue was the preparation of the DNA for sequencing, as the DNA is often degraded in food and even minute amounts of DNA molecules must be identified.

Kaarel Krjutškov, Head of the Precision Medicine Laboratory of the Competence Centre on Health Technologies and Senior Research Fellow of Molecular Medicine at the University of Tartu, whose laboratory was used to prepare the sequencing of the DNA extracted from the biscuits, noted that faking the DNA fingerprint of a food is complicated and expensive, and it is therefore cheaper to offer authentic food. "People can see that in medicine, precise DNA analysis is already a reality, but in food industry and in the field of food safety, the golden age of DNA-based analysis is yet to come," Krjutškov remarked.

The research used a method based on short, unique DNA sequences (k-mers) for analysing genomic DNA data, which enables the scientists to quickly identify plant or bacterial DNA present in a food or an environmental sample. The Chair of Bioinformatics at the Institute of Molecular and Cell Biology at the University of Tartu has been developing competence in the bioinformatics of k-mers and DNA analysis over the last five years. The software developed in the Chair of Bioinformatics has been used both in medicine and for providing food safety.

The article authors' earlier cooperation resulted in the NIPTIFY foetal chromosomal disorder test, which helps to detect, with almost 100% accuracy, the DNA sequences causing foetal Down syndrome in the mother's blood sample as early as the tenth week of pregnancy. The genome analysis method developed in the Chair of Bioinformatics is used to identify pathogenic bacteria, specify their disease-causing capabilities and predict antibiotic resistance. This enabled Maido Remm, Professor of Bioinformatics at the University of Tartu, and his working group to advise the management board of a production company contaminated with a dangerous strain and to help determine the spread of type ST1247 in the company during the listeria outbreak in autumn 2019.

According to Remm, the research article proves that DNA sequencing can also be used for identifying allergenic ingredients in processed food. "DNA sequencing is a promising diagnostic method which makes it possible to quickly obtain precise information about food and the microbes around us," he said. "The use of sequencing and k-mers makes it possible in a very short time to implement a diverse range of diagnostic tests that meet the needs of researchers and companies."
-end-


Estonian Research Council

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.