Nav: Home

Water vapor in the atmosphere may be prime renewable energy source

June 09, 2020

The search for renewable energy sources, which include wind, solar, hydroelectric dams, geothermal, and biomass, has preoccupied scientists and policymakers alike, due to their enormous potential in the fight against climate change. A new Tel Aviv University study finds that water vapor in the atmosphere may serve as a potential renewable energy source in the future.

The research, led by Prof. Colin Price in collaboration with Prof. Hadas Saaroni and doctoral student Judi Lax, all of TAU's Porter School of the Environment and Earth Sciences, is based on the discovery that electricity materializes in the interaction between water molecules and metal surfaces. It was published in Scientific Reports on May 6, 2020.

"We sought to capitalize on a naturally occurring phenomenon: electricity from water," explains Prof. Price. "Electricity in thunderstorms is generated only by water in its different phases -- water vapor, water droplets, and ice. Twenty minutes of cloud development is how we get from water droplets to huge electric discharges -- lightning -- some half a mile in length."

The researchers set out to try to produce a tiny low-voltage battery that utilizes only humidity in the air, building on the findings of earlier discoveries. In the nineteenth century, for example, English physicist Michael Faraday discovered that water droplets could charge metal surfaces due to friction between the two. A much more recent study showed that certain metals spontaneously build up an electrical charge when exposed to humidity.

The scientists conducted a laboratory experiment to determine the voltage between two different metals exposed to high relative humidity, while one is grounded. "We found that there was no voltage between them when the air was dry," Prof. Price explains. "But once the relative humidity rose above 60%, a voltage began to develop between the two isolated metal surfaces. When we lowered the humidity level to below 60%, the voltage disappeared. When we carried out the experiment outside in natural conditions, we saw the same results.

"Water is a very special molecule. During molecular collisions, it can transfer an electrical charge from one molecule to the other. Through friction, it can build up a kind of static electricity," says Prof. Price. "We tried to reproduce electricity in the lab and found that different isolated metal surfaces will build up different amounts of charge from water vapor in the atmosphere, but only if the air relative humidity is above 60%. This occurs nearly every day in the summer in Israel and every day in most tropical countries."

According to Prof. Price, this study challenges established ideas about humidity and its potential as an energy source. "People know that dry air results in static electricity and you sometimes get 'shocks' you when you touch a metal door handle. Water is normally thought of as a good conductor of electricity, not something that can build up charge on a surface. However, it seems that things are different once the relative humidity exceeds a certain threshold," he says.

The researchers, however, showed that humid air may be a source of charging surfaces to voltages of around one volt. "If a AA battery is 1.5V, there may be a practical application in the future: to develop batteries that can be charged from water vapor in the air," Prof. Price adds.

"The results may be particularly important as a renewable source of energy in developing countries, where many communities still do not have access to electricity, but the humidity is constantly about 60%," Prof. Price concludes.
-end-
American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers -- ranking TAU #1 in Israel, #10 outside of the US and #66 in the world.

American Friends of Tel Aviv University

Related Electricity Articles:

Mirror-like photovoltaics get more electricity out of heat
New heat-harnessing 'solar' cells that reflect 99% of the energy they can't convert to electricity could help bring down the price of storing renewable energy as heat, as well as harvesting waste heat from exhaust pipes and chimneys.
Engineers use electricity to clean up toxic water
Powerful electrochemical process destroys water contaminants, such as pesticides. Wastewater is a significant environment issue.
Considering health when switching to cleaner electricity
Power plants that burn coal and other fossil fuels emit not only planet-warming carbon dioxide, but also pollutants linked to breathing problems and premature death.
Windows will soon generate electricity, following solar cell breakthrough
Semi-transparent solar cells that can be incorporated into window glass are a 'game-changer' that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.
Static electricity as strong as lightening can be saved in a battery
Prof. Dong Sung Kim and his joint research team presented a new technology that can increase the amount of power generated by a triboelectric nanogenerator.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Using renewable electricity for industrial hydrogenation reactions
The University of Pittsburgh's James McKone's research on using renewable electricity for industrial hydrogenation reactions is featured in the Journal of Materials Chemistry A's Emerging Investigators special issue.
Water + air + electricity = hydrogen peroxide
A reactor developed by Rice University engineers produces pure hydrogen peroxide solutions from water, air and energy.
Producing electricity at estuaries using light and osmosis
Researchers at EPFL are working on a technology to exploit osmotic energy -- a source of power that's naturally available at estuaries, where fresh water comes into contact with seawater.
Experimental device generates electricity from the coldness of the universe
A drawback of solar panels is that they require sunlight to generate electricity.
More Electricity News and Electricity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.