Nav: Home

Lab makes 4D printing more practical

June 09, 2020

HOUSTON - (June 9, 2020) - Soft robots and biomedical implants that reconfigure themselves upon demand are closer to reality with a new way to print shapeshifting materials.

Rafael Verduzco and graduate student Morgan Barnes of Rice's Brown School of Engineering developed a method to print objects that can be manipulated to take on alternate forms when exposed to changes in temperature, electric current or stress.

The researchers think of this as reactive 4D printing. Their work appears in the American Chemical Society journal ACS Applied Materials and Interfaces.

They first reported their ability to make morphing structures in a mold in 2018. But using the same chemistry for 3D printing limited structures to shapes that sat in the same plane. That meant no bumps or other complex curvatures could be programmed as the alternate shape.

Overcoming that limitation to decouple the printing process from shaping is a significant step toward more useful materials, Verduzco said.

"These materials, once fabricated, will change shape autonomously," Verduzco said. "We needed a method to control and define this shape change. Our simple idea was to use multiple reactions in sequence to print the material and then dictate how it would change shape. Rather than trying to do this all in one step, our approach gives more flexibility in controlling the initial and final shapes and also allows us to print complex structures."

The lab's challenge was to create a liquid crystal polymer "ink" that incorporates mutually exclusive sets of chemical links between molecules. One establishes the original printed shape, and the other can be set by physically manipulating the printed-and-dried material. Curing the alternate form under ultraviolet light locks in those links.

Once the two programmed forms are set, the material can then morph back and forth when, for instance, it's heated or cooled.

The researchers had to find a polymer mix that could be printed in a catalyst bath and still hold its original programmed shape.

"There were a lot of parameters we had to optimize -- from the solvents and catalyst used, to degree of swelling, and ink formula -- to allow the ink to solidify rapidly enough to print while not inhibiting the desired final shape actuation," Barnes said.

One remaining limitation of the process is the ability to print unsupported structures, like columns. To do so would require a solution that gels just enough to support itself during printing, she said. Gaining that ability will allow researchers to print far more complex combinations of shapes.

"Future work will further optimize the printing formula and use scaffold-assisted printing techniques to create actuators that transition between two different complex shapes," Barnes said. "This opens the door to printing soft robotics that could swim like a jellyfish, jump like a cricket or transport liquids like the heart."
-end-
Co-authors of the paper are Rice graduate student Seyed Sajadi; Shaan Parekh, a student at John Foster Dulles High School in Sugar Land, Texas; Rice research scientist Muhammad Rahman; and Pulickel Ajayan, chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry. Verduzco is an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering.

The Welch Foundation for Chemical Research and the Army Research Office Chemical Sciences Division supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/acsami.0c07331.

This news release can be found online at https://news.rice.edu/2020/06/09/lab-makes-4d-printing-more-practical/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Mighty morphing materials take complex shapes: http://news.rice.edu/2018/12/20/mighty-morphing-materials-take-complex-shapes-2/

Verduzco Laboratory: http://verduzcolab.blogs.rice.edu

Rice Department of Chemical and Biomolecular Engineering: https://chbe.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu Video:

https://youtu.be/H6SYLFtoS8Y Credit: Verduzco Laboratory/Rice University

Images for download:

https://news-network.rice.edu/news/files/2020/06/0615_SHAPE-1-WEB.jpg

Rice engineer Rafael Verduzco and graduate student Morgan Barnes led the development of a method to 3D-print materials that morph from one shape to another through application of temperature, electric current or stress. (Credit: Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2020/06/0615_SHAPE-2-WEB.jpg

A graphic shows the process by which a Rice University lab uses 3D printing to make shapeshifting materials that may be useful to make soft robots or as biomedical implants. (Credit: Verduzco Laboratory/Rice University)

https://news-network.rice.edu/news/files/2020/06/0615_SHAPE-3-WEB.jpg

Shapeshifting materials produced at Rice University with a 3D printer morph from their original form to an alternate through changes in temperature, electric current or stress. This example shows how one printed configuration can be programmed to take various shapes. (Credit: Verduzco Laboratory/Rice University)

https://news-network.rice.edu/news/files/2020/06/0615_SHAPE-4-WEB.jpg

Shapeshifting materials 3D printed through a process developed at Rice University can be manipulated to take out-of-plane forms. The material incorporates two distinct sets of chemical links that can shift back and forth with temperature, current or strain inputs. (Credit: Verduzco Laboratory/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Jeff Falk
713-348-6775
jfalk@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Rice University

Related Soft Robots Articles:

NIST scientists get soft on 3D printing
Researchers at the National Institute of Standards and Technology (NIST) have developed a new method of 3D-printing gels and other soft materials.
Soft robots, origami combine for potential way to deliver medical treatments
Researchers have found a way to send tiny, soft robots into humans, potentially opening the door for less invasive surgeries and ways to deliver treatments for conditions ranging from colon polyps to stomach cancer to aortic artery blockages.
A soft-hearted approach to healing
Researchers at the University of Tsukuba and Keio University have clarified the roles of matrix stiffness and mechanotransduction as well as the signaling pathways in the transformation of cardiac fibroblasts into contractile cardiomyocytes and show that soft substrates comparable to native myocardium improve the efficiency of this cardiac reprogramming.
Soft robot actuators heal themselves
Repeated activity wears on soft robotic actuators, but these machine's moving parts need to be reliable and easily fixed.
Jellyfish-inspired soft robots can outswim their natural counterparts
Engineering researchers have developed soft robots inspired by jellyfish that can outswim their real-life counterparts.
First dinosaur eggs were soft like a turtle's
New research suggests that the first dinosaurs laid soft-shelled eggs -- a finding that contradicts established thought.
Next generation of soft robots inspired by a children's toy
Buckling, the sudden loss of structural stability, is usually the stuff of engineering nightmares.
A soft touch for robotic hardware
Robots can be made from soft materials, but the flexibility of such robots is limited by the inclusion of rigid sensors necessary for their control.
Inspired by cheetahs, researchers build fastest soft robots yet
Inspired by the biomechanics of cheetahs, researchers have developed a new type of soft robot that is capable of moving more quickly on solid surfaces or in the water than previous generations of soft robots.
Goals, opportunities, guides for advancing soft tissue and soft materials research
A type of damage in soft materials and tissue called cavitation is one of the least-studied phenomena in physics, materials science and biology, but evidence suggesting that cavitation occurs in the brain during sudden impact leading to traumatic brain injury has accelerated interest, says materials scientist Alfred Crosby at UMass Amherst.
More Soft Robots News and Soft Robots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.