Storm elves and sprites recorded on video

June 10, 2010

A team of Spanish researchers has made a high-speed recording of elves and sprites in storms, fleeting and luminous electric phenomena produced in the upper layers of the atmosphere. Their analysis of these observations has been published in the Journal of Geophysical Research.

"This is the first time in Europe that we have been able to use high-speed video to detect transitory luminous phenomena taking place in the upper atmosphere - so-called sprites (in the form of a carrot or column) and elves (which are ring shaped)", Joan Montanyà, co-author of the study and a researcher at the Department of Electric Energy at the Polytechnic University of Catalonia (UPC), tells SINC.

The results have been published in the Journal of Geophysical Research and show there are many fewer elves in storms that form over land than those at sea, where electric currents apparently have greater energy, especially in winter. Some of the recordings show elves and sprites at the same time, evidence of the strength of lightning over the sea during winter storms.

The scientists also observed the interaction between two sprites. A branch of one of them hit and bounced off the second, giving clues about their dynamics and electric structure. Sprites normally appear for around 40 milliseconds and 20 or 30 kilometres away from the site of the lightning.

"All these phenomena are related with storms, particularly winter storms, but they only appear in mesoscale convective systems (usually in large fronts), which produce lightning with high levels of energy or extreme electric currents", explains Montanyà.

As it is difficult to record these phenomena in situ during storms, the researchers placed a high-speed video camera on land with an image intensifier. This was used to remotely record a winter storm in the Western Mediterranean (at a distance of between 400 and 1,000 kilometres) between the coasts of Italy and Spain.

The physics of electric discharges

"The observations made it possible not only to capture images of these short duration events, but also mean we can study the structure and dynamics of these highly unique electric discharges", explains Montanyà.

"Understanding the physics behind lightning and events associated with it will help us to protect ourselves better", the scientist points out, stressing the importance of research into sprites and elves to better understand other phenomena, such as gamma rays from terrestrial sources (TGF, Terrestrial Gamma-ray Flash), which also develop above electric storms.

In fact, the European Space Agency (ESA)'s future Atmosphere-Space Interactions Monitor mission (ASIM) aims to monitor these phenomena by placing an instrument on the outside of the International Space Station, due to be launched in 2013.
-end-
* CONCEPTS:

Sprites are electric discharges shaped in the form of a carrot or vertical column that form in the mesosphere (at a height of between 50 and 85 km). They often appear with a luminous "halo".

Elves are rings that expand and propagate themselves horizontally at the speed of light across the base of the ionosphere (85-700 km). There is also a third group, jets, which are bluish lightning bolts that can electrically connect the top of the clouds with the base of the ionosphere.

FECYT - Spanish Foundation for Science and Technology

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.