Copper essential for burning fat, researchers find

June 10, 2016

Is copper deficiency contributing to the obesity epidemic?

Though small amounts of copper are essential to health - oysters, liver, beans and nuts are good sources - copper's role in metabolism has been unclear: Some studies found that it boosted fat burning, others that it depressed it.

University of California, Berkeley, Lawrence Berkeley National Laboratory and Howard Hughes Medical Institute researchers have now clarified the critical role that copper plays in nutrition: It helps move fat out of fat cells - called adipocytes - and into the blood stream for use as energy.

Without enough copper, fat builds up in fat cells without being utilized, said Christopher Chang, the Class of 1942 Chair and a professor of chemistry and of molecular and cell biology at UC Berkeley.

"Unlike other studies that link copper levels both to increased or decreased fat metabolism, our study shows definitively how it works - it's a signal that turns on fat cells," said Chang, who also is a faculty scientist at Berkeley Lab and a Howard Hughes Medical Institute investigator. "If we could find a way to burn fat more efficiently, this could be a big contribution to dealing with obesity and diabetes."

The new study appeared online this week, and will be published in the July print issue of the journal Nature Chemical Biology.

The findings point not only to a new role for copper in metabolism, but highlight the key role copper plays throughout the body. Previously, Chang showed that copper is a key signaling molecule in the brain, tamping down over-excitation of nerve cells.

"The work we have done with copper really shows that signaling is not restricted to just a few elements on the periodic table, like sodium, calcium and potassium," he said. "Copper is a brand new class; in a sense we have basically added a fourth letter to the alphabet, in terms of metal elements that contribute to the language of signaling."

The similar roles copper plays in regulating nerve cells and fat burning highlight a growing perception that the neurological system, specifically the brain, plays a role in diseases of metabolism and the immune system, such as obesity and inflammation.

"Some of us are now thinking about obesity as a neurological disease rather than strictly a metabolic disease, because there are potentially connections between your fat tissue and the brain," he said. "The notion that obesity and obesity-related diseases like diabetes may be neurological in nature opens the door to new basic science and therapeutic approaches."

Chang cautions against ingesting copper supplements as a result of these studies, however. Too much copper can lead to imbalances in other essential minerals, including zinc.

Copper-related diseases

With a longstanding interest in the biological roles of metals, Chang focused on fat metabolism after reading that copper is often given to cows to regulate weight gain. To discover how copper actually works in fat metabolism, he chose to study mice with a genetic defect that produces symptoms similar to those of a rare human illness, Wilson's disease. In both situations, a key enzyme that moves copper in and out of cells is mutated, causing misregulation and copper overload - often to toxic levels - in the liver. The condition is also characterized by bloated fat cells.

He and his team, in particular postdocs Lakshmi Krishnamoorthy and Joseph Cotruvo Jr., discovered that in the mice, copper is hoarded by the liver, basically starving fat cells of copper so that they cannot properly regulate fat storage and burning in organs such as the stomach and pancreas. This overload is accompanied by lower than normal levels of fats, or lipids, in the blood.

"Lipolysis is the breakdown of large pieces of fat into smaller pieces so they can circulate in the blood and be burned throughout the body," he said. "We discovered that in these Wilson's mice, low copper in the fat cells made them unable to burn fat as well as normal mice."

They succeeded in tracking down exactly how copper works: It releases a brake on fat burning. Normally, a second messenger molecule called cyclic-AMP (cAMP) activates the enzymes that break down the fat molecules. They found, however, that another enzyme (phosphodiesterase 3, or PDE3) blocks cAMP, probably to prevent fat breakdown when it is not needed, such as when we're couch potatoes. Copper blocks this enzyme, thereby "putting a brake on a brake," Chang said.

Chang is continuing his study of copper's roles in the brain and in fat metabolism, looking for possible ways to target the copper pathway to treat neurodegenerative brain diseases or diseases of metabolism. He also is looking at copper's roles in perception and sleep.

These studies have led him also to explore the connections between the central nervous system - the brain and spinal cord - and the peripheral nervous system, which innervates all our organs, and how that may cause disease.
-end-
The work was funded by the National Institutes of Health (GM 79465, GM067166, GM101502).

University of California - Berkeley

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.