Nav: Home

Generating unclonable patterns to fight counterfeiting

June 10, 2016

In a multinational collaboration, researchers from the Universities of Luxembourg, Ljubljana and Vienna have developed a new method to produce unique reflecting patterns that can be applied on valuable objects. As these patterns can't be cloned or copied, they could be used to identify products unambiguously in order to avoid counterfeiting.

In today's globalized and connected world, the ability to authenticate objects and people has become a security-critical business at many levels; personal, societal, and national. Object authentication is desirable, for instance, in the purchase of high-value objects. Buyers and sellers have a shared interest to prove that the goods that the customers receive are the same that they pay for, and not copies. Object authentication is of utmost importance in businesses that are threatened by counterfeited or cloned phones, sim-cards, debit-cards, and similar pieces of equipment. Sometimes, the object's holder is authenticated directly, as with passports, ID cards and badges. Currently in uptrend is the use of biometric authentication, such as fingerprint or iris recognition. Badges are mainly used to control access to high security areas, fingerprints mostly to open access to personal devices, such as a smart phone.

However, authentication strategies are not bulletproof: Objects can be forged, cards are regularly cloned, and even fingerprints can be stolen. The case of copied fingerprints has recently made the headlines, exposing a great risk with this approach: people cannot invalidate their fingerprints nor can they renew them, thus the stolen copies remain a threat indefinitely.

From this point of view, an attractive solution would be to have unclonable non-biometric physical tokens, which are as unique as the biometric elements in our bodies but available aplenty. For being commercially appealing, the production costs of such unique tokens need to be low. These features lead to the concept of Physical Unclonable Functions (PUFs). These are objects that respond in a unique way to physical inputs of different kinds. For instance, they scatter light in unpredictable directions or sparkle with variable colors when illuminated, react with unknown delays or start up in random states when switched on. PUFs are nowadays inside microchips, ensuring that the silicon components come from an authorized factory. Much more rare are optical PUFs, generating a response to light input that can be captured by a camera in order to authenticate the item of value, to which the PUF is attached.

In a cross-disciplinary collaboration between the Physics & Materials Science Research Unit (PhyMS) and the Interdisciplinary Center for Security and Trust (SnT) at the University of Luxembourg, Dr. Gabriele Lenzini (SnT) and the group of Prof. Jan Lagerwall (PhyMS) propose an entirely new type of PUF, based on the peculiar optics of spheres of a so-called cholesteric liquid crystal. Thanks to the self-assembled periodic structure that is characteristic of this type of liquid crystal, the spheres reflect specific colors in the same way as do butterfly or peacock wings. With the help of photonics experts Prof. Irena Drevensek-Olenik (University of Ljubljana) and Prof. Romano Rupp (University of Vienna), the team carried out a detailed analysis of the optics of a large number of such spheres, finding that the spheres communicate with each other in unexpected ways. This communication by light gives rise to a unique colorful pattern that can be tuned dynamically by changing the way the spheres are illuminated. Because different types of liquid crystal spheres can be arranged randomly in a token, generated patterns that the authors postulate are equally random, therefore it is impossible to copy the token and its related set of patterns, rendering it highly attractive as a PUF to authenticate people or objects.

In their paper, published in the renowned science journal Scientific Reports1, Geng et al. furthermore introduce a technique for ensuring adequate robustness of the spheres, such that they can be handled easily for preparing a PUF token, yet they are still delicate enough that an attempt to tamper with the token would break the spheres and thus invalidate the token. Moreover, they have developed a new method of annealing the spheres that drastically reduces production time, using a microfluidic process that can be scaled up at low cost. The authors discuss how this new category of PUF can be used in a variety of security applications, thereby aiding to solve a problem of great current societal importance.
-end-


University of Luxembourg

Related Liquid Crystal Articles:

Observation of the phase transition of liquid crystal defects for the first time
KAIST researchers observed the phase transition of topological defects formed by liquid crystal (LC) materials for the first time.
Penn physicists discover why drying liquid crystal drops leave unusual 'coffee rings'
In previous papers, UPenn physicists investigated the 'coffee ring effect,' the ring-shaped stain of particles left after drops of coffee evaporate.
Liquid-crystal and bacterial living materials self-organize and move in their own way
Smart glass, transitional lenses and mood rings are not the only things made of liquid crystals; mucus, slug slime and cell membranes also contain them.
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Crystallization made crystal clear
Researchers at the Weizmann Institute of Science have, for the first time, directly observed the process of crystallization on the molecular level, validating some recent theories about crystallization, as well as showing that if one knows how the crystal starts growing, one can predict the end structure.
Molecular scale transporter with a twist, powered by liquid crystal defects
New experiments, supported by a theoretical model, show how defects forming loops around twisted plastic fibres dipped in liquid crystal could be used for the transport of biochemical substances, when controlled by electric and magnetic fields.
Mapping the effects of crystal defects
MIT research offers insights into how crystal dislocations -- a common type of defect in materials -- can affect electrical and heat transport through crystals, at a microscopic, quantum mechanical level.
Scientists create new form of matter, a time crystal
Scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.
Most complex nanoparticle crystal ever made by design
The most complex crystal designed and built from nanoparticles has been reported by researchers at Northwestern University and the University of Michigan.
In-cell molecular sieve from protein crystal
Scientists at Tokyo Institute of Technology, RIKEN, and Kyoto Institute of Technology have applied rational crystal design to create protein crystals with extended porous network to accumulate exogenous molecules inside living cells.

Related Liquid Crystal Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".