UTA professor earns NSF grant to make lasers, amplifiers for silicon photonics technology

June 10, 2016

A University of Texas at Arlington researcher will explore the possibility of using a novel optical resonance effect in nanostructured silicon films to generate light, which could lead to more efficient and compact integrated photonic-electric circuits.

The new technology will greatly enhance transmission speeds by easing the limitations inherent in current electrical technology, make cameras and infrared technology less expensive. The technology also could improve sensing instruments, researchers said.

Robert Magnusson, UTA's Texas Instruments Distinguished University Chair in Nanoelectronics and professor of electrical engineering, has received a three-year, $370,000 National Science Foundation grant to create the engineered nanoscale amplifiers and lasers. The optical resonance effect induces interaction of light with an optical structure. Magnusson designs the structure in a way that forces this interaction to occur.

Silicon photonics is compatible with modern electronics technology on which everyday integrated circuit chips for computers and communications are based. It is important to be able to generate light in silicon because the next generation of electrical systems will be integrated with silicon photonics, and light sources are necessary for that technology to work, Magnusson explained.

"Modern electronics and photonics technologies are merging, enabling more efficient, compact chips where the advantages of each technology are in play," Magnusson said. "Thus, signals may be transmitted by light inside and between chips rather than through wires."

He added: "This is the type of high-risk, high-reward project that the NSF likes to support. They want innovative research that has the potential to be truly transformative."

Jonathan Bredow, chair of the UTA Department of Electrical Engineering, said Magnusson's research, as well as that of others across the University, exemplifies the groundbreaking work with global environmental impact under way at UTA under the Strategic Plan 2020: Bold Solutions | Global Impact.

"UTA is fortunate to have world-class researchers like Dr. Magnusson who create new knowledge. The benefits of his findings are potentially huge," Bredow said. "With each innovation, we're moving toward processing light directly on silicon."

Duane Dimos, UTA vice president for research, said, "This transformative silicon photonics technology has the potential to greatly enhance the way we transmit electronic information and is the kind of research that can have a huge economic impact. Dr. Magnusson's latest invention shows the kind of innovation that flows from a premier public research university like UTA, and we all benefit from his advancements in the photonics industry."

Magnusson's findings will allow the development of new types of lasers and amplifiers that can be applied to integrated photonics systems that could better detect incoming signals carried by light, such as those in Internet data transmission, and that could increase transmission and processing rates in optical communications.

He will use a fundamental phenomenon in silicon called the Raman effect, which causes the re-emission of photons from the silicon when light is shined on it. Those photons are emitted at shorter wavelengths and longer wavelengths, the latter of which is more effective.

Magnusson has worked in photonics throughout his career and pioneered a host of device technologies, many of which are patented. The current project will allow him to use his novel photonic resonance effects to bring the excitation and emission wavelengths into resonance simultaneously to realize a new Raman laser technology platform.

He leads UT Arlington's Nanophotonics Device Group, which pursues theoretical and experimental research in periodic nanostructures, nanolithography, nanophotonics, nanoelectronics, nanoplasmonics, and optical bio- and chemical sensors. His research established new transformative biosensor platform technology that is in commercial use by Resonant Sensors Inc., a company he co-founded.

Magnusson has garnered more than $10 million in research funding and endowments for UTA since becoming the Texas Instruments Distinguished University Chair in Nanoelectronics in 2008, published nearly 450 journal and conference papers and secured 30 issued patents and pending patents.

He is a charter fellow of the National Academy of Inventors - one of 13 NAI fellows among the UTA faculty - and a Life Fellow of the prestigious Institute of Electrical and Electronics Engineers. The IEEE has singled out Magnusson for his contributions to the invention of a new class of nanophotonic devices that employ light at a nanometer scale. His devices are used as biosensors, lasers, tunable filters and optical components.
-end-
About The University of Texas at Arlington

The University of Texas at Arlington is a R-1 Carnegie "highest research activity" institution of more than 53,000 degree-seeking students in campus-based and online degree programs and is the second-largest institution in The University of Texas System. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2016 Best for Vets list. Visit http://www.uta.edu to learn more, and find UTA rankings and recognition at http://www.uta.edu/uta/about/rankings.php.

University of Texas at Arlington

Related Silicon Articles from Brightsurf:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.

Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.

A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.

Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.

Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.

Read More: Silicon News and Silicon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.