Nav: Home

Drug resistance genes shared among bacteria in hospitals can be deadly

June 10, 2018

June 10, 2018 - Atlanta, GA - A hospital outbreak of carbapenem-resistant Enterobacteriaceae (CRE) became more worrisome when researchers found resistance genes being shared among unrelated bacteria via plasmids and other mobile genetic elements. This new research will be presented at ASM Microbe, the annual meeting of the American Society for Microbiology, held from June 7th through June 11th in Atlanta, Georgia.

In 2017, eighteen patients in a primary care hospital became sick with CRE, a family of bacteria responsible for more than 9,000 healthcare-associated infections (HAI) per year in the United States. Carbapenems are often used as last line treatment options, reserved for the sickest patients; so it is concerning when bacteria resistant to these drugs cause infections.

Outbreaks of CRE infections are often caused by closely related bacteria spreading from person-to-person or even from a common source, such as a contaminated medical device. In such cases, infection control efforts focus on eliminating transmission of a single strain of bacteria. In this outbreak, however, multiple types of CRE (i.e., different bacterial strains and species) were infecting patients, and whole genome sequencing revealed that the outbreak was likely perpetuated by carbapenem resistance genes being shared among unrelated bacteria via plasmids or other mobile genetic elements.

"This demonstrates the important role whole genome sequencing can play in investigating HAI outbreaks," said Richard Stanton, "This outbreak shows us how drug resistance genes can be shared among otherwise unrelated bacteria co-existing in a patient's microbial community or in the environment." This in turn may require expanding infection control and detection efforts to include multiple strains and species to halt the outbreak.

The bacteria involved in this outbreak included Klebsiella pneumonia and Escherichia coli, two species of bacteria that can cause a variety of healthcare-associated infections, including pneumonia, bloodstream infections, surgical site infections, and meningitis. Treatment of the infections in these outbreaks was complicated due to the presence of carbapenemase genes in the bacteria, of which two major variants of the Klebsiella pneumonia Carbapenemase (KPC) gene (KPC-2 and KPC-3) were found.

The bacterial strains with the KPC-2 gene were largely unrelated but all carried the same drug resistance plasmid. Similarly, the strains with the KPC-3 gene were quite diverse except they all shared a plasmid, common among the KPC-3 strains but different from the KPC-2 strains.

"Due in part to this finding, HAI investigations now include a broader scope to look not just for single species causing infections, but also for plasmids spreading drug resistance across multiple types of bacteria," said Dr. Stanton. Infection control efforts also focus on areas where plasmid sharing is likely to occur in the healthcare environment, such as in sinks and drains.

Vaneet Arora, Lorrie Sims, and Rachel Zinner from the Kentucky Department for Public Health isolated and cultured the bacterial samples used in this study. Jonathan Daniels, Alison Laufer Halpin, and Richard Stanton from the Division of Healthcare Quality Promotion at the Centers for Disease Control and Prevention performed whole genome sequencing and analysis of the isolates.

This work was made possible through CDC's investments to Combat Antibiotic Resistant Bacteria and the Advanced Molecular Detection Program at CDC. A poster highlighting this work will be presented by Richard Stanton at the ASM Microbe 2018 conference in Atlanta, GA on June 10th from 12:45 - 2:45 PM, as part of Session 420 - Infection Prevention and Control: Drug-Resistant Pathogens in Hospitals.
-end-
ASM Microbe, the annual meeting of the American Society for Microbiology showcases the best microbial sciences in the world and provides a one-of-a-kind forum to explore the complete spectrum of microbiology. ASM Microbe is held in Atlanta, GA from June 7-11, 2018.

The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab