Nav: Home

'Green Revolution' in RNAi tools and therapeutics

June 10, 2019

"Green revolution" in the early 1950s, the extensive cultivation of Dwarf Rice solves the food problem in developing countries. At present, chronic infection with hepatitis B virus (HBV) has been a major public health problem. According to the announcement from World Health Organization (WHO), an estimated 257 million people are chronically infected with hepatitis B. Recent studies have shown that the expression level of hepatitis B virus surface antigen gene (HBsAg) is correlated with the occurrence of HCC or fibrosis severity in transgenic mice and HBV infection patients, therefore, HBsAg becomes a rising target for drug design for the treatment of hepatitis B.

In a study recently published in Biomaterials, Dr. Zhi Hong and Dr. Chen-Yu Zhang from Nanjing University and the collaborators report that the small silencing RNA sequences against HBsAg generated in edible lettuce (Lactuca sativa L.) can specifically bind and inhibit gene expression in p21-HBsAg knock-in transgenic mice at a relatively low amount when compared to synthetic siRNAs. More importantly, continuous administration of amiRNA-containing decoction relieves the liver injury in transgenic mice without extra negative effects even after 15-month treatment.

This work utilizes the plant endogenous microRNA biogenesis machinery to produce methylated short interfering sequences for increasing the stability of target siRNAs while reducing the cost of production. Therefore, this work not only provide an affordable treatment strategy for chronic hepatitis B patients in developing countries, but also reduces the required dose of RNAi drugs to minimize the potential side effects of RNAi therapy and allow the administration for a relatively long period or in conjunction with other antiviral drugs.

To those patients in immune-tolerant phase or resistant to conventional antivirus treatment, this RNAi-based therapy may effectively reduce their risk of liver injury by daily consumption of vegetable decoction containing HBsAg silencing RNAs.

If we take a long view, this method may also be applicable to the treatment of hepatitis C or other infectious diseases due to the effective, less toxic and financially viable strategy to produce short interfering sequences using engineered plants. It can be predicted that plant derived siRNAs will bring a "green revolution" in RNAi tools and therapeutics.

When we look back, the Green Revolution has brought us a richer food supply. At the same time, we should also know that the daily food is also changing ourselves, in which the small RNAs we take from food may play an important role.
-end-
The researchers of this project include Shuo Zhang1, †, Xiaolin Sang1, †, Dongxia Hou1, †, Jinmei Chen1, Hongwei Gu1, Yujing Zhang1, Jing Li1, Darong Yang2, Haizhen Zhu2, Xiao Yang3, Fangyu Wang1,4, Chunni Zhang1,5, Xi Chen1, Ke Zen1, Chen-Yu Zhang1 & Zhi Hong1 of 1State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210046, China; 2Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China Research Center of Cancer Prevention and Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha 410022, China; 3State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; 4Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China; 5Department of Clinical Laboratory, Jinling Hospital, School of Life Sciences, Nanjing University, Nanjing 210002, China

This work was supported by grants from the National Key Research and Development Program of China (2018YFA0507101) and the National Basic Research Programme of China (973 Program; 2014CB542300).

Author contact:

Chen-Yu Zhang: Tel: +86-25-89680245; E-mail: cyzhang@nju.edu.cn

Zhi Hong: Tel: +86-25-89681282; E-mail: zhihong@nju.edu.cn

Nanjing University School of Life Sciences

Related Hepatitis Articles:

Busting Up the Infection Cycle of Hepatitis B
Researchers at the University of Delaware have gained new understanding of the virus that causes hepatitis B and the ''spiky ball'' that encloses its genetic blueprint.
Liver cancer: Awareness of hepatitis D must be raised
Scientists from the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the most serious consequence of chronic hepatitis: hepatocellular carcinoma.
Hepatitis B: New therapeutic approach may help to cure chronic hepatitis B infection
Researchers at Helmholtz Zentrum München, Technical University of Munich (TUM) and the German Center for Infection Research (DZIF) have developed a novel therapeutic approach to cure chronic hepatitis B.
Anti-hepatitis medicine surprises
A new effective treatment of hepatitis C not only combats the virus, but is also effective against potentially fatal complications such as reduced liver functioning and cirrhosis.
Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.
Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.
How common is Hepatitis C infection in each US state?
Hepatitis C virus infection is a major cause of illness and death in the United States and injection drug use is likely fueling many new cases.
New strains of hepatitis C found in Africa
The largest population study of hepatitis C in Africa has found three new strains of the virus circulating in the general population in sub-Saharan Africa.
High stability of the hepatitis B virus
At room temperature, hepatitis B viruses (HBV) remain contagious for several weeks and they are even able to withstand temperatures of four degrees centigrade over the span of nine months.
Findings could lead to treatment of hepatitis B
Researchers have gained new insights into the virus that causes hepatitis B -- a life-threatening and incurable infection that afflicts more than 250 million people worldwide.
More Hepatitis News and Hepatitis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.