Nav: Home

Lettuce have it! Machine learning for cr-optimization

June 10, 2019

At Earlham Institute (EI), artificial intelligence based techniques such as machine learning is moving from being merely an exciting premise to having real-life applications, where it's needed most: improving efficiency and precision on the farm.

Researchers in the Zhou Group at EI, in cooperation with Ely-based G's Growers, have developed a machine learning platform, AirSurf-Lettuce, which works with computer vision and ultra-scale images taken from the air to help categorise lettuce crops in fields.

The advanced software includes measuring quantity, size and pinpointing location to help farmers harvest with precision and getting the crop to market in the most efficient possible way. Importantly, this technology can be applied to other crops, widening the scope for positive impact across the food chain.

Lettuce is big business, especially in East Anglia, with 122,000 tonnes produced in the UK each year. Up to 30% of yield can be lost due to inefficiencies in the growing process as well as harvest strategies, which, if made up, could provide a significant economic boost.

It's very important that farmers and growers understand precisely when crops will become harvest-ready, so that they can set in motion the planning of logistics, trading and marketing their produce further along the chain.

Traditionally, however, measuring crops in fields has been very time-consuming and labour intensive, as well as prone to error; therefore novel AI solutions based on aerial images can provide a much more robust and effective method.

Another barrier to efficiency is the fact that inclement weather conditions, which have been increasing in recent years, can throw off harvesting times quite significantly, as crops take different lengths of time to mature.

The AirSurf technology - developed by members of the Zhou Group, including first authors of the paper on the project, Alan Bauer and Aaron Bostrom - uses 'deep learning' (a deep structured machine learning technique) combined with sophisticated, ultra-wide-scale imaging analysis to measure iceberg lettuce in a high-throughput mode. This is able to identify the precise quantity and location of lettuce plants, with the additional advantage of recognising crop quality, i.e. small, medium or large lettuce heads.

Combining this system with GPS allows farmers to precisely track size distribution of lettuce in fields, which can only help in increasing the precision and effectiveness of farming practice, including harvest time.

First author, Alan Bauer at EI, said: " This cross-disciplinary collaboration integrates computer vision and machine learning with the lettuce growing business to demonstrate how we can improve crop yields using machine learning."

Group Leader at EI, Dr Ji Zhou, said: "My lab is keen to seek every possible approach to translate our public funded research in algorithm design, machine learning, computer vision, and crop phenomics to techniques and tools that can be used by academic and industrial partners to address challenging problems in crop research and crop production.

"Utilising our research work supported by BBSRC and other public and industry jointly funded projects, we have partnered with G's, leading vegetable growers in the UK, to equip our Agri-Food sector with smart and precise crop surveillance and analytical methods, for which we are confident that better crop management decisions and enhanced crop marketability could be achieved through our joint efforts".

Industry partner at G's Growers, Innovation Manager Jacob Kirwan, added: "Farming at a large scale means that precision is essential when ensuring that we are producing crops in an environmentally and economically sustainable way. Using technology like AirSurf means that growers are able to understand the variability in their fields and crops at a much higher level of detail that was previously possible.

"The decisions that can then be taken from this information, such as varying applications of inputs and irrigation; changing harvest strategies and planning the optimum time to sell crop, will all contribute towards increasing on farm yields and improving farm productivity."
-end-
The paper, titled: Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production is published in Horticulture Research - Nature.

Earlham Institute

Related Technology Articles:

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.