Nav: Home

Machine learning approach for low-dose CT imaging yields superior results

June 10, 2019

TROY, N.Y. --Machine learning has the potential to vastly advance medical imaging, particularly computerized tomography (CT) scanning, by reducing radiation exposure and improving image quality.

Those new research findings were just published in Nature Machine Intelligence by engineers at Rensselaer Polytechnic Institute and radiologists at Massachusetts General Hospital and Harvard Medical School.

According to the research team, the results published in this high-impact journal make a strong case for harnessing the power of artificial intelligence to improve low-dose CT scans.

"Radiation dose has been a significant issue for patients undergoing CT scans. Our machine learning technique is superior, or, at the very least, comparable, to the iterative techniques used in this study for enabling low-radiation dose CT," said Ge Wang, an endowed chair professor of biomedical engineering at Rensselaer, and a corresponding author on this paper. "It's a high-level conclusion that carries a powerful message. It's time for machine learning to rapidly take off and, hopefully, take over."

Low-dose CT imaging techniques have been a significant focus over the past several years in an effort to alleviate concerns about patient exposure to X-ray radiation associated with widely used CT scans. However, decreasing radiation can decrease image quality.

To solve that, engineers worldwide have designed iterative reconstruction techniques to help sift through and remove interferences from CT images. The problem, Wang said, is that those algorithms sometimes remove useful information or falsely alter the image.

The team set out to address this persistent challenge using a machine learning framework. Specifically, they developed a dedicated deep neural network and compared their best results to the best of what three major commercial CT scanners could produce with iterative reconstruction techniques.

This work was performed in close collaboration with Dr. Mannudeep Kalra, a professor of radiology at Massachusetts General Hospital and Harvard Medical School, who was also a corresponding author on the paper.

The researchers were looking to determine how the performance of their deep learning approach compared to the selected representative iterative algorithms currently being used clinically.

Several radiologists from Massachusetts General Hospital and Harvard Medical School assessed all of the CT images. The deep learning algorithms developed by the Rensselaer team performed as well as, or better than, those current iterative techniques in an overwhelming majority of cases, Wang said.

Researchers found that their deep learning method is also much quicker, and allows the radiologists to fine-tune the images according to clinical requirements, Dr. Kalra said.

These positive results were realized without access to the original, or raw, data from all the CT scanners. Wang pointed out that if original CT data is made available, a more specialized deep learning algorithm should perform even better.

"This has radiologists in the loop," Wang said. "In other words, this means that we can integrate machine intelligence and human intelligence together in the deep learning framework, facilitating clinical translation."

He said that these results confirm that deep learning could help produce safer, more accurate CT images while also running more rapidly than iterative algorithms.

"We are excited to show the community that machine learning methods are potentially better than the traditional methods," Wang said. "It sends the scientific community a strong signal. We should go for machine learning."

This research by Wang's team is among the significant advancements consistently being made by faculty in the Biomedical Imaging Center within the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer.

"Professor Wang's work is an excellent example of how advances in artificial intelligence, and machine and deep learning can improve biomedical tools and practices by addressing hard problems--in this case helping to provide high-quality CT images using a lower radiation dose. Transformative developments from these collaborative teams will lead to more precise and personalized medicine," said Deepak Vashishth, director of CBIS.
-end-
Hongming Shan, a postdoctoral researcher at Rensselaer, is the first author of the paper. Uwe Kruger, professor of practice in biomedical engineering at Rensselaer, was instrumental when it came to statistical analysis in this project. Radiologists from Massachusetts General Hospital in Boston and Ramathibodi Hospital in Bangkok are also coauthors on this research. This work was supported in part by a grant from the National Institute of Biomedical Imaging and Bioengineering within the National Institutes of Health.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America's first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Rensselaer Polytechnic Institute

Related Artificial Intelligence Articles:

Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Artificial intelligence and family medicine: Better together
Researcher at the University of Houston are encouraging family medicine physicians to actively engage in the development and evolution of artificial intelligence to open new horizons that make AI more effective, equitable and pervasive.
Artificial Intelligence to improve the precision of mammograms
The Artificial Intelligence techniques, used in combination with evaluations by expert radiologists, improve the precision in the detection of cancer through mammograms.
Using artificial intelligence to assess ulcerative colitis
Researchers from Tokyo Medical and Dental University (TMDU) have developed an artificial intelligence system with a deep neural network that can effectively evaluate endoscopic data from patients with ulcerative colitis, which is a type of inflammatory bowel disease, without the need for biopsy collection.
Robot uses artificial intelligence and imaging to draw blood
Rutgers engineers have created a tabletop device that combines a robot, artificial intelligence and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.
Artificial intelligence yields new antibiotic
Using a machine-learning algorithm, MIT researchers have identified a powerful new antibiotic compound.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.