Nav: Home

Fiber-optic probe can see molecular bonds

June 10, 2019

In "Avengers: Endgame," Tony Stark warned Scott Lang that sending him into the quantum realm and bringing him back would be a "billion-to-one cosmic fluke."

In reality, shrinking a light beam to a nanometer-sized point to spy on quantum-scale light-matter interactions and retrieving the information is not any easier. Now, engineers at the University of California, Riverside, have developed a new technology to tunnel light into the quantum realm at an unprecedented efficiency.

In a Nature Photonics paper, a team led by Ruoxue Yan, an assistant professor of chemical and environmental engineering, and Ming Liu, an assistant professor of electrical and computer engineering, describe the world's first portable, inexpensive, optical nanoscopy tool that integrates a glass optical fiber with a silver nanowire condenser. The device is a high-efficiency round-trip light tunnel that squeezes visible light to the very tip of the condenser to interact with molecules locally and send back information that can decipher and visualize the elusive nanoworld.

Our ability to zoom in on the fine details of an object is limited by the wave nature of light. If you ever used an optical microscope in a science class, you probably learned that one can only magnify an object by about 2,000 times before everything becomes a blur. That's because it's impossible to distinguish any features finer than half the wavelength of light -- a few hundred nanometers for far-field visible light -- no matter how advanced your microscope is.

Unlike far-field waves, near-field waves only exist very close to a light source and are not governed by this rule. But they do not travel voluntarily and are very difficult to utilize or observe. Since the 1920s, scientists have thought that forcing light through a small pinhole on a metal film would generate near-field waves that could be converted to detectable light, but the first successful prototypes weren't built until half a century later.

In the early 1990s, Eric Betzig, the 2014 Nobel laureate in chemistry, made substantial improvements to earlier prototypes in imaging performance and reliability. Since then, near-field scanning optical microscopy, as the technique is known, has been used to reveal the nanoscale details of many chemical, biological, and material systems.

Unfortunately, almost another half-century later, this technique is still esoteric and used by few.

"Sending light through a tiny pinhole a thousand-times smaller than the diameter of a strand of human hair is no piece of cake," Liu said. "Only a few in a million photons, or light particles, can pass the pinhole and reach the object you want to see. Getting a one-way ticket is already challenging; a round-trip ticket to bring back a meaningful signal is almost a daydream."

Scientists have made endless efforts to improve this chance. While the most sophisticated probes today allow only one in 1,000 photons to reach the object, the UC Riverside device delivers half the photons to the tip.

"The key of the design is a two-step sequential focusing process," Yan said. "In the first step, the wavelength of the far-field light slowly increases as it travels down a gradually thinning optical fiber, without changing its frequency. When it matches the wavelength of the electron density wave in the silver nanowire lying on top of the optical fiber, boom! All energy is transferred to the electron density wave and starts to travel on the surface of the nanowire instead."

In the second step of the focusing process, the wave gradually condenses to a few nanometers at the tip apex.

The UC Riverside device, a tiny silver needle with light coming off the tip "is sort of like Harry Potter's wand that lights up a tiny area," explained Sanggon Kim, the doctoral student who carried out the study.

Kim used the device to map out the frequency of molecular vibrations that allow one to analyze chemical bonds that hold atoms together in a molecule. This is known as tip-enhanced Raman spectroscopy, or TERS, imaging. TERS is the most challenging branch of near-field optical microscopy, because it deals with very weak signals. It usually requires bulky, million-dollar equipment to concentrate light and tedious preparation work to get super-resolution images.

With the new device, Kim achieved 1-nanometer resolution on a simple portable equipment. The invention could be a powerful analytical tool that promises to reveal a new world of information to researchers in all disciplines of nanoscience.

"The integration of a fiber-nanowire assembly with tip-enhanced Raman spectroscopy coupled with a scanning tunneling microscope enables the collection of high-resolution chemical images in a simple and elegant setup, placing this tool at the forefront of optical imaging and spectroscopy. We are proud of this achievement and its impact on chemical research. We are even more encouraged by its potential application in a wide array of disciplines such as biological and materials research, which will further scientific advancement," said Lin He, acting deputy division director for the National Science Foundation Division of Chemistry that in part funded the research.
-end-
The paper, "High external-efficiency nanofocusing for lens-free near-field optical nanoscopy," is published in Nature Photonics. In addition to Liu, Yan, and Kim, authors include Ning Yu, Xuezhi Ma, Yangzhi Zhu, and Qiushi Liu. All the authors are in the Marlan and Rosemary Bourns College of Engineering at UC Riverside.

University of California - Riverside

Related Photons Articles:

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.
The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Producing single photons from a stream of single electrons
Researchers at the University of Cambridge have developed a novel technique for generating single photons, by moving single electrons in a specially designed light-emitting diode (LED).
Counting photons is now routine enough to need standards
NIST has taken a step toward enabling universal standards for single-photon detectors (SPDs), which are becoming increasingly important in science and industry.
Scientists have found out why photons flying from other galaxies do not reach the Earth
In the Universe there are extragalactic objects such as blazars, which very intensively generate a powerful gamma-ray flux, part of photons from this stream reaches the Earth, as they say, directly, and part -- are converted along the way into electrons, then again converted into photons and only then get to us.
Researchers discover new way to split and sum photons with silicon
A team of researchers at The University of Texas at Austin and the University of California, Riverside have found a way to produce a long-hypothesized phenomenon -- the transfer of energy between silicon and organic, carbon-based molecules -- in a breakthrough that has implications for information storage in quantum computing, solar energy conversion and medical imaging.
Breaking the limits: Discovery of the highest-energy photons from a gamma-ray burst
Gamma-ray bursts (GRBs) are brief and extremely powerful cosmic explosions, suddenly appearing in the sky, about once per day.
More Photons News and Photons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.