Nav: Home

Magnetism: An unexpected push for the hydrogen economy

June 10, 2019

Humankind has entered uncharted territory: atmospheric CO2 levels soared to record-breaking 415ppm for the first time in human history. The need to find a sustainable alternative to CO2-producing fuels is in dire need. One of the most promising environmentally-friendly energetic sources is hydrogen generated via water splitting - the reaction in which water is broken down into oxygen and hydrogen. Now, researchers from the Institute of Chemical Research of Catalonia are bringing this hydrogen economy one step closer in an unexpected way.

In a paper published in Nature Energy, scientists from ICIQ's Galán-Mascarós and López groups describe how, for the first time, a magnet has been used to directly enhance the production of hydrogen in alkaline water splitting via electrolysis. "The simplicity of the discovery opens new opportunities to implement magnetic enhancement in water splitting. Furthermore, the low cost of the technology makes it suitable for industrial applications," explains Felipe A. Garcés-Pineda, first author of the paper.

Magnetic pull

The research shows how the presence of an external magnetic field - induced by approaching a neodymium magnet to the electrolyser - spurs the electrocatalytic activity on the anode, in some cases, increasing the hydrogen production twice fold. The scientists report that the magnetic field directly affects the reaction pathway by allowing for spin conservation of the active catalyst, which in turn favours parallel spin alignment of the oxygen atoms during the reaction. This overall spin polarization, due to the external magnetic field, improves the efficiency of the process. "This demonstrates that there is a lot to learn from the intimate reaction mechanisms taking place on electrocatalysts and opens new ways to overcome the limitations of state-of-the-art systems" states Núria López, ICIQ group leader and co-author of the manuscript.

The researchers studied a variety of catalysts in identical working conditions and report the catalytic activity enhancement is proportional to the magnetic nature of the catalysts used to drive the water splitting reaction. This way, NiZnFe4Ox, a highly magnetic ferrite, exhibited the biggest enhancing effect when presented with a magnetic field. This ferrite also possesses the advantage of being able to magnetically attach itself to a nickel metal support - curbing the need to use binders to attach catalysts to a physical support.

Big science for big problems

"The challenge towards a hydrogen economy is not only a scientific one," explains José Ramón Galán-Mascarós, ICIQ group leader and corresponding author of the paper. Galán-Mascarós participates in CREATE and A-LEAF, two European-wide projects devoted to reducing the costs for the production of hydrogen and other clean fuels. Both European consortiums are working to develop platforms to produce renewable fuels without employing critical raw materials.

To the scientist, finding technological solutions that avoid the use of noble metals, such as platinium or iridium, is the real challenge. It's also a requirement to make the hydrogen energy cycle viable - since noble metals are expensive and extremely scarce, their use limits the scaling-up of the technologies for mass production. Instead, scientists are searching for earth-abundant alternatives, which at the moment are able to offer very good performance in alkaline conditions, and allow for economically-viable scaling. "After decades of scientific research, the problem is still ongoing and big enough as not to expect easy solutions. The challenge of making sustainable fuels widely available needs of a multidisciplinary effort, and ultimately, of international collaborations," concludes Galán Mascarós.
-end-


Institute of Chemical Research of Catalonia (ICIQ)

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.