Nav: Home

Magnetism: An unexpected push for the hydrogen economy

June 10, 2019

Humankind has entered uncharted territory: atmospheric CO2 levels soared to record-breaking 415ppm for the first time in human history. The need to find a sustainable alternative to CO2-producing fuels is in dire need. One of the most promising environmentally-friendly energetic sources is hydrogen generated via water splitting - the reaction in which water is broken down into oxygen and hydrogen. Now, researchers from the Institute of Chemical Research of Catalonia are bringing this hydrogen economy one step closer in an unexpected way.

In a paper published in Nature Energy, scientists from ICIQ's Galán-Mascarós and López groups describe how, for the first time, a magnet has been used to directly enhance the production of hydrogen in alkaline water splitting via electrolysis. "The simplicity of the discovery opens new opportunities to implement magnetic enhancement in water splitting. Furthermore, the low cost of the technology makes it suitable for industrial applications," explains Felipe A. Garcés-Pineda, first author of the paper.

Magnetic pull

The research shows how the presence of an external magnetic field - induced by approaching a neodymium magnet to the electrolyser - spurs the electrocatalytic activity on the anode, in some cases, increasing the hydrogen production twice fold. The scientists report that the magnetic field directly affects the reaction pathway by allowing for spin conservation of the active catalyst, which in turn favours parallel spin alignment of the oxygen atoms during the reaction. This overall spin polarization, due to the external magnetic field, improves the efficiency of the process. "This demonstrates that there is a lot to learn from the intimate reaction mechanisms taking place on electrocatalysts and opens new ways to overcome the limitations of state-of-the-art systems" states Núria López, ICIQ group leader and co-author of the manuscript.

The researchers studied a variety of catalysts in identical working conditions and report the catalytic activity enhancement is proportional to the magnetic nature of the catalysts used to drive the water splitting reaction. This way, NiZnFe4Ox, a highly magnetic ferrite, exhibited the biggest enhancing effect when presented with a magnetic field. This ferrite also possesses the advantage of being able to magnetically attach itself to a nickel metal support - curbing the need to use binders to attach catalysts to a physical support.

Big science for big problems

"The challenge towards a hydrogen economy is not only a scientific one," explains José Ramón Galán-Mascarós, ICIQ group leader and corresponding author of the paper. Galán-Mascarós participates in CREATE and A-LEAF, two European-wide projects devoted to reducing the costs for the production of hydrogen and other clean fuels. Both European consortiums are working to develop platforms to produce renewable fuels without employing critical raw materials.

To the scientist, finding technological solutions that avoid the use of noble metals, such as platinium or iridium, is the real challenge. It's also a requirement to make the hydrogen energy cycle viable - since noble metals are expensive and extremely scarce, their use limits the scaling-up of the technologies for mass production. Instead, scientists are searching for earth-abundant alternatives, which at the moment are able to offer very good performance in alkaline conditions, and allow for economically-viable scaling. "After decades of scientific research, the problem is still ongoing and big enough as not to expect easy solutions. The challenge of making sustainable fuels widely available needs of a multidisciplinary effort, and ultimately, of international collaborations," concludes Galán Mascarós.
-end-


Institute of Chemical Research of Catalonia (ICIQ)

Related Magnetic Field Articles:

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.