Nav: Home

Technique pulls interstellar magnetic fields within easy reach

June 10, 2019

MADISON, Wis. -- A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.

Together with gravity, magnetic fields play a major role in many of the astrophysical processes -- from star formation to stirring the massive dust and gas clouds that permeate interstellar space -- that underpin the structure and composition of stars, planets and galaxies. On the galactic scale, magnetic fields dominate the acceleration and propagation of cosmic rays, and play an important role in transferring heat and polarized radiation.

What's more, the polarized radiation that arises from galactic magnetic fields exceeds by orders of magnitude that of the Cosmic Microwave Background (CMB), the relic radiation of the first moments of the universe. The next milestone in understanding the origin of the universe, some scientists believe, requires measuring the CMB's polarized radiation. Importantly, unraveling the topology of the intervening magnetic fields between Earth and the CMB will be a necessary step to reliably obtain those data.

But despite their importance and pervasive influence, interstellar magnetic fields represent one of the final frontiers of astrophysics. Little is known about them, in large part, because they are exceedingly difficult to study.

"There are very limited ways to study magnetic fields in space," explains Alexandre Lazarian, a UW-Madison professor of astronomy and an authority on the interstellar medium, the seemingly empty spaces between the stars that are, in fact, rich in matter and feature twisted, folded and tangled magnetic fields composed of fully or partially ionized plasmas entrained on magnetic fields. "Our understanding of all these (astrophysical) processes suffers from our poor knowledge of magnetic fields."

Now, much of that knowledge may be more readily at hand. Writing this week (June 10, 2019) in the journal Nature Astronomy, an international team led by the Wisconsin astrophysicist demonstrates a new methodology capable of tracing the orientations of magnetic fields in the swirl of interstellar space.

The proof-of-concept reported in Nature Astronomy builds on a series of theoretical and numerical studies published over the last two years by Lazarian and his students, and which lay out a radical new approach to mapping the tangle of magnetic fields in space.

Until now, much of the detailed mapping of magnetic fields in diffuse environments such as clouds of dust and gas in space involved infrared polarimetry with instruments deployed either on satellites or balloons flown high in the stratosphere.

The new method, known as the Velocity Gradient Technique and informally as the "Wisconsin technique," uses previously collected observational data from a variety of ground-based telescopes, transcending the need to put instruments in space, a costly and limited resource for astronomers. Building on studies of turbulence in magnetic fields in conducting fluids, Lazarian and his students devised the new statistical approach to measure the topology of magnetic fields using routine spectroscopic observations taken from the ground.

For the most part, infrared light is absorbed by Earth's atmosphere, which is why conventional magnetic field measurements require telescopes positioned on long-duration, high-altitude balloon flights, or above it on satellites. In recent years, many new measurements of interstellar magnetic fields, for instance, were gathered using the Planck satellite, a European space observatory with infrared capabilities and operational from 2009 to 2013.

Applying the new Wisconsin technique to a number of interstellar molecular clouds whose magnetic fields had been previously measured by the Planck satellite, Lazarian and his students were able to generate high-resolution maps using existing ground-based observations.

"The technique provides magnetic field maps of resolution comparable to maps obtained with the Planck mission," says Lazarian, "and it utilizes spectroscopic observations collected by researchers for other purposes. Given that the technique utilizes data from ground-based telescopes and interferometers, the resolution of magnetic field maps can be significantly improved."

In addition to determining the direction of the interstellar magnetic fields, the new methodology can determine the strength of the field at a fine scale, down to each pixel on a map. "This demonstrates that the Wisconsin technique can revolutionize studies of magnetic effects on star formation by using existing ground-based telescopes without waiting for new space-based polarization missions with a higher resolution in some distant future," Lazarian says.

The new technique, Lazarian adds, also opens a unique window to the development of three-dimensional magnetic field maps, work that has already been demonstrated in a corresponding paper published in the Astrophysical Journal by Lazarian and his student, Diego Gonzales Casanova.

To contrast the capabilities of the new technique with traditional polarimetry, Lazarian and his group, including UW-Madison physics graduate student Yue Hu and astronomy graduate student Ka Ho Yuen, key authors of the new Nature Astronomy report, deployed their new methodology to produce the first magnetic field map of the Smith Cloud, a mysterious cloud of atomic hydrogen that seems to be crashing onto the disk of the Milky Way. Previous efforts to map the cloud's magnetic field were frustrated by its weak infrared emission, obscuring dust and galactic atomic hydrogen along the same line of sight.
-end-
--Terry Devitt, (608) 262-8282, trdevitt@wisc.edu

This work was supported through National Science Foundation grants 1715754 and 1816234, and NASA grant NNX14AJ53G. The research was carried out in part at the Jet Propulsion Laboratory, which is operated for NASA by the California Institute of Technology.

University of Wisconsin-Madison

Related Magnetic Field Articles:

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
Researchers discover link between magnetic field strength and temperature
Researchers recently discovered that the strength of the magnetic field required to elicit a particular quantum mechanical process corresponds to the temperature of the material.
More Magnetic Field News and Magnetic Field Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.