Nav: Home

Scientists discover unlikely culprit for fertilizing North Pacific Ocean: Asian dust

June 10, 2019

CORVALLIS, Ore. - The vast subtropical "gyres" - large systems of rotating currents in the middle of the oceans - cover 40 percent of the Earth's surface and have long been considered biological deserts with stratified waters that contain very little nutrients to sustain life.

These regions also are thought to be remarkably stable, yet scientists have documented one anomaly in the North Pacific Subtropical Gyre ecosystem that has puzzled oceanographers for years: The region's chemistry changes periodically, especially levels of phosphorous and iron, affecting the overall nutrient composition and ultimately its biological productivity.

In a new study published this week in Proceedings of the National Academy of Sciences, researchers document what induces these variations: changes in the amount of iron that is deposited into the ocean via dust from Asia.

"We now know that these areas that were thought to be barren and stable are actually quite dynamic," said Ricardo Letelier, an Oregon State University biogeochemist and ecologist, who in collaboration with David Karl at the University of Hawaii led this study. "Since these areas cover so much of the Earth's surface, we need to know more about how they work in order to better predict how the system will respond to climate variations in the future."

The study focused on the North Pacific Subtropical Gyre, and used three decades of observation data from Station ALOHA by the Hawaii Ocean Time-series program, which is funded by the National Science Foundation.

The surface layer of the North Pacific gyre is characterized by very clear waters with hardly any nutrients. The extraordinary optical clarity of these waters allows sunlight to penetrate deep into the water column and support photosynthetic activity below 100 meters (or 328 feet).

Typically, the ocean's upper water column is fertilized by nutrient-rich water mixing from the deep, but these waters are very stratified and little mixing takes place. Deeper water (hundreds to thousands of meters below the surface) is enriched in nutrients through the decomposition of the remains of small organisms that grew and harvested the scarce nutrients in the surface layers before sinking toward the seafloor.

Both phosphorous and iron are key components for life and the researchers noticed that the levels of those nutrients in North Pacific gyre surface waters changed significantly during the three decades of the study.

Letelier said the team was able to relate these changes to the iron input from Asian dust - a combination of the desertification of that continent, with combustion, especially wildfires and factory output and the wind patterns across the North Pacific ocean - that accounted for the variance and provided varying amounts of nutrients to sustain life.

And a key to that variance is the Pacific Decadal Oscillation, an ocean-atmosphere relationship that varies between weak and strong phases of atmospheric pressure in the northeast Pacific. In years when the low pressure weakens, winds from Asia become stronger, move more southward, and bring more dust, fertilizing the ocean surrounding Station ALOHA. When the pressure strengthens, the opposite takes place.

Strong winds can bring significant amounts of iron, allowing organisms to grow and utilize all the phosphorus in the upper layers of the ocean. However, because most of the iron is not soluble, deep waters are enriched in phosphorus relative to iron. Hence, when winds are weaker, there is little iron input to fertilize and remove any excess phosphorus in the upper layers that may be introduced through deep water mixing.

"Sometimes there are periods of 5-6 years of phosphorus enrichment, and then there are periods when it switches over," Letelier said. "From 2000 to 2007, there was almost no phosphorus. We have seen some changes in the function of the ecosystem, but we haven't yet seen significant changes in the biological composition. They may be coming; it's too early to tell."

As the Artic warms, the scientists say they expect to see long-term changes in wind patterns across the North Pacific. In addition, the evolution of land use and pollution driven by anthropogenic activity in Asia will affect the sources and magnitude of iron and other nutrients carried by wind across the ocean.

How these changes will affect the transport of iron-rich dust into the eastern Pacific and affect the productivity in this vast oceanic region remains an open question.
-end-


Oregon State University

Related Phosphorus Articles:

Reduce, reuse, recycle: The future of phosphorus
Societies celebrate the discovery of this important element in 1669.
Lack of reporting on phosphorus supply chain dangerous for global food security
A new study from Stockholm University and University of Iceland shows that while Phosphorus is a key element to global food security, its supply chain is a black box.
Hydrogenation of white phosphorus leads way to safer chemical technology
White phosphorus is well-known for being a highly toxic compound with suffocating scent.
Rice cultivation: Balance of phosphorus and nitrogen determines growth and yield
Cluster of Excellence on Plant Sciences CEPLAS at the University of Cologne cooperates with partners from Beijing to develop new basic knowledge on nutrient signalling pathways in rice plants.
Ammonia by phosphorus catalysis
More than 100 years after the introduction of the Haber-Bosch process, scientists continue to search for alternative ammonia production routes that are less energy demanding.
RUDN scientist: Tibetan soil enrichment with nitrogen and phosphorus leads to carbon loss
A RUDN soil scientist studied the soils of the Qinghai-Tibet Plateau and found out that simultaneous increase of nitrogen and phosphorus levels reduces the volume of organic carbon in the soil.
Soil's history: A solution to soluble phosphorus?
New research suggests that, over time, less phosphorus fertilizer may be necessary on agricultural fields.
Keeping phosphorus under control to improve the quality of patients with renal failure
A University of Cordoba research team, Cordoba's Maimonides Institute of Biomedical Research and Queen Sofia University Hospital link phosphorus normalization in blood to a decrease in a hormone that damages the heart.
Blue phosphorus -- mapped and measured for the first time
Until recently, the existence of 'blue' phosphorus was pure theory: Now an HZB team was able to examine samples of blue phosphorus at BESSY II for the first time and confirm via mapping of their electronic band structure that this is actually this exotic phosphorus modification.
Soil phosphorus availability and lime: More than just pH?
Plants can't do without phosphorus. But there is often a 'withdrawal limit' on how much phosphorus they can get from the soil.
More Phosphorus News and Phosphorus Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.