Self-healing bone cement

June 10, 2020

Our body is able to treat many injuries and wounds all by itself. Self-healing powers repair skin abrasions and enable bones to grow back together. However, doctors often have to lend a helping hand to repair bones after a fracture or due to a defect. Increasingly, bone replacement materials are being used, which partially or completely restore the form and function of the bone at the site of the damage. To ensure that such implants do not have to be replaced or repaired through extensive surgery in the event of damage, they should themselves possess self-healing capabilities. Material scientists at Friedrich Schiller University Jena have now developed a bone replacement material that minimises the extent of damage to it and at the same time repairs itself. They report on their research in the prominent research magazine "Scientific Reports".

Minimally invasive use of calcium phosphate cement

The experts from Jena, who collaborated with colleagues from the University of Würzburg as part of the German Research Foundation's priority research programme "Self-healing Materials", concentrated on what is called calcium phosphate cement - a bone substitute that is already widely used in medicine. On the one hand, the material stimulates bone formation and increases the ingrowth of blood vessels. On the other hand, it can be introduced into the body as a paste in a minimally invasive procedure. There, its malleability allows it to bind closely to the bone structure.

"Due to its high degree of brittleness, however, cracks form in the material when it is subjected to excessive load. These cracks can quickly widen, destabilise the implant and ultimately destroy it - similar to concrete on buildings," explains Prof. Frank A. Müller from the University of Jena. "For this reason, calcium phosphate cement has so far mainly been used on bones that do not play a load-bearing role in the skeleton, for example in the mouth and jaw area."

Bridging and refilling cracks

The material scientists in Jena have now developed a calcium phosphate cement in which any cracks do not develop into catastrophic damage. Instead, the material itself seals them. The reason for this is carbon fibres that have been added to the material.

"Firstly, these fibres significantly increase the damage tolerance of the cement, because they bridge cracks as they form and thus prevent them from opening further," Müller explains. "Secondly, we have chemically activated the surface of the fibres. This means that as soon as the exposed fibres encounter body fluid, which collects in the openings created by the cracks, a mineralisation process is initiated. The resulting apatite - a fundamental building block of bone tissue - then closes the crack again."

The Jena scientists have simulated this process in their experiments by deliberately damaging the calcium phosphate cement and healing it in simulated body fluid. This intrinsic self-healing ability - and the greater load-bearing capacity associated with fibre reinforcement - could considerably expand the areas in which bone implants made of calcium phosphate cement can be used, which could possibly also include load-bearing areas of the skeleton in the future.
Original publication:

Anne V. Boehm, Susanne Meininger, Uwe Gbureck, Frank A. Mueller (2020): Self-healing capacity of fiber-reinforced calcium phosphate cements, Scientific Reports, DOI:


Prof. Frank A. Müller
Otto Schott Institute of Materials Research
Friedrich Schiller University Jena
Löbdergraben 32, 07743 Jena, Germany
Tel.: +49 (0)3641 / 947750
E-mail: frank.mueller[at]

Friedrich-Schiller-Universitaet Jena

Related Cement Articles from Brightsurf:

The cement for coral reefs
Coral reefs are hotspots of biodiversity. As they can withstand heavy storms, they offer many species a safe home.

Building cities with wood would store half of cement industry's current carbon emissions
A new study has found that shifting to wood as a building construction material would significantly reduce the environmental impact of building construction.

Concrete structure's lifespan extended by a carbon textile
The Korea Institute of Civil Engineering and Building Technology (KICT) has announced the development of an effective structural strengthening method using a noncombustible carbon textile grid and cement mortar, which can double the load-bearing capacities of structurally deficient concrete structures and increase their usable lifespan by threefold.

Cement, salt and water: From Politecnico di Torino a new material toward green heat
A study carried out from the Turin university in collaboration with the Advanced Energy Technology Institute CNR-ITAE and published on the journal Scientific Reports, suggest a low cost technology to store heat during the summer and use it during the winter, thus saving in fossil fuels.

Cement-free concrete beats corrosion and gives fatbergs the flush
Researchers from RMIT University have developed an eco-friendly zero-cement concrete, which all but eliminates corrosion.

Self-healing bone cement
Material scientists at the University of Jena have developed a bone replacement based on calcium phosphate cement and reinforced with carbon fibers.

Chinese scientists optimize strontium content to improve bioactive bone cement
Researchers from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences have developed a new strontium-substituted bioactive glass (BG) bone cement that optimizes the concentration of strontium to improve peri-implant bone formation and bone-implant contact.

'Wood' you like to recycle concrete?
Scientists at The University of Tokyo studied a method for recycling unused concrete with wood fibers.

Buildings can become a global CO2 sink if made out of wood instead of cement and steel
A material revolution replacing cement and steel in urban construction by wood can have double benefits for climate stabilization.

New optical technique captures real-time dynamics of cement setting
Researchers have developed a nondestructive and noninvasive optical technique that can determine the setting times for various types of cement paste, which is used to bind new and old concrete surfaces.

Read More: Cement News and Cement Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to