Acoustics put a fresh spin on electron transitions

June 10, 2020

ITHACA, N.Y. - Electrons are very much at the mercy of magnetic fields, which scientists can manipulate to control the electrons and their angular momentum - i.e. their "spin."

A Cornell team led by Greg Fuchs, assistant professor of applied and engineering physics in the College of Engineering, in 2013 invented a new way to exert this control by using acoustic waves generated by mechanical resonators. That approach enabled the team to control electron spin transitions (also known as spin resonance) that otherwise wouldn't be possible through conventional magnetic behavior.

The finding was a boon for anyone looking to build quantum sensors of the sort used in mobile navigation devices. However, such devices still required a magnetic control field - and therefore a bulky magnetic antenna - to drive certain spin transitions.

Now, Fuchs's group has shown that these transitions can be driven solely by acoustics. This eliminates the need for the magnetic antenna, enabling engineers to build smaller, more power-efficient acoustic sensors that can be packed more tightly on a single device.

The team's paper, "Acoustically Driving the Single Quantum Spin Transition of Diamond Nitrogen-Vacancy Centers," published May 27 in Physical Review Applied.

"You can use a magnetic field to drive these spin transitions, but a magnetic field is actually a very extended, big object," Fuchs said. "In contrast, acoustic waves can be very confined. So if you're thinking about controlling different regions of spins inside your chip, locally and independently, then doing it with acoustic waves is a sensible approach."

In order to drive the electron spin transitions, Fuchs and Huiyao Chen '20, the paper's lead author, used nitrogen-vacancy (NV) centers, which are defects in the crystal lattice of a diamond. The acoustic resonators are microelectromechanical systems (MEMS) devices equipped with a transducer. When voltage is applied, the device vibrates, sending acoustic waves of 2 to 3 gigahertz into the crystal. These frequencies cause strain and stress in the defect, which results in the electron spin resonance.

One complication: This process also excites the magnetic field, so the researchers have never been entirely sure of the effect of the mechanical vibrations versus the effect of the magnetic oscillations. So Fuchs and Chen set out to painstakingly measure the coupling between the acoustic waves and the spin transition, and compare it to the calculations proposed by theoretical physicists.

"We were able to separately establish the magnetic part and the acoustic part, and thereby measure that unknown coefficient that determines how strongly the single quantum transition couples to acoustic waves," Fuchs said. "The answer was, to our surprise and delight, that it's an order of magnitude larger than predicted. That means that you can indeed design fully acoustic spin resonance devices that would make excellent magnetic field sensors, for instance, but you don't need a magnetic control field to run them."

Fuchs is working with Cornell's Center for Technology Licensing to patent the discovery, which could have important applications in navigation technology.

"There's a significant effort nationwide to make highly stable magnetic field sensors with diamond NV centers," Fuchs said. "People are already building these devices based on conventional magnetic resonance using magnetic antennas. I think our discovery is going to have tremendous benefit in terms of how compact you can make it and the ability to make independent sensors that are closely spaced."
Sunil Bhave, professor of electrical and computer engineering at Purdue University, contributed to the paper.

The research was supported by Defense Advanced Research Projects Agency and the Office of Naval Research.

Cornell University

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to