Brightest Object In Universe Observed By University Of Washington Astronomer

June 10, 1998

The quasar (or quasi-stellar object) is 4 million-billion to 5 million-billion times brighter than the Sun. It is estimated to be more than 10 times brighter than any other quasar, and outshines the brightest galaxy by more than 100 times.

The research is described in the June 11 edition of the British journal Nature, and the findings have been accepted for publication in Astrophysical Journal.

Geraint Lewis, a postdoctoral researcher at the UW, along with his collaborators, made the discovery in observations taken with the 2.5-meter Isaac Newton Telescope at La Palma in the Canary Islands, and also on the 1-meter Jacobus Kapteyn Telescope at La Palma. Lewis' colleagues include Michael Irwin of the Royal Greenwich Observatory, Rodrigo Ibata of the European Southern Observatory in Munich, and Edward Totten of Queens University, Belfast.

The object is scheduled for observation by the Hubble Space Telescope in the near future. Its brightness actually comes from two different sources. Light in the ultraviolet and optical range comes from what is known as an accretion disk surrounding a supermassive black hole. A supermassive black hole has millions of times the mass of the Sun. Matter from stars and other objects attracted by the black hole's gravity generates energy (including light) from friction as it is torn apart and falls toward the black hole.

The second source of brightness, in the infrared portion of the spectrum, comes from thick dust heated by radiation from the center of the quasar. "In most of these ultraluminous galaxies, dust is the source of most of the energy," Lewis says. "But in this quasar, about half comes from the accretion disk."

Quasars are some of the most energetic objects observed in the universe. Each quasar generates more energy than the rest of a galaxy's stars combined. Yet a quasar, the black hole and its surrounding accretion disk occupy a relatively small amount of space, galactically speaking - not much larger than our solar system.

The quasar observation occurred by accident. The team was studying the Sagittarius Dwarf Galaxy's interaction with our own. They were observing stars in the halo of our galaxy when this very bright object showed up in one observation.

"It was actually a serendipitous discovery, as the best discoveries often are," Lewis said.

The quasar is estimated to be 11 billion light years from Earth. Light being received now on Earth emanated from the quasar when the universe was only about 10 percent of its present age.

Finding an object of this energy level could help scientists understand more about what fuels quasars. Lewis and his colleagues are trying to gather more data, including high-resolution images, to develop an understanding of the complete spectrum of energy from this object.

"Then we can apply physics to the various components, which should tell us more about what's happening in the quasar," he said. Ultimately, information like this helps astronomers develop a more accurate picture of the universe's origins and its structure.

Further study could show that the apparent energy level of the quasar is being magnified by a gravitational lens. Gravitational lenses are often seen to be the cause of extremely bright objects. Typically, such a lens might exaggerate the real energy level by a factor of 30 or 40 - but even taking that into account, this galaxy would outshine our own by more than 1,000 times.
Contact information:

Lewis: 250-721-8656 or 206-616-5001, email
Ibata: +49 (89) 320 06 243, email
Irwin: +44 (1223) 33 7524, email
Totten: +44 (1782) 58 3308, email

University of Washington

Related Black Hole Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.

Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.

Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.

Read More: Black Hole News and Black Hole Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to