Scientists unravel the genetic secrets of nature's master of mimicry

June 11, 2014

Scientists investigating how one of the greatest shape shifters in the natural world is able to trick predators to avoid being eaten have identified the gene behind the fascinating feat.

The African Swallowtail butterfly, also known as the 'Mocker Swallowtail' or the 'Flying Handkerchief,' can appear to change both colour and shape.

Males of the species fly boldly around the tree tops, their rapid flight making them look like shaking handkerchiefs, however females lurk in the bushes and pretend to be examples of Monarch butterflies that are nasty to eat.

The females mimic different Monarchs in different parts of Africa and how they do this has long been a mystery. In an international collaboration involving scientists from the Natural History Museum, Imperial College London, the University of Cambridge and researchers in Nairobi, Paris and Jena in Germany, The University of Exeter's Professor Richard ffrench-Constant (correct spelling) has helped solve the genetic switch that allows female swallowtails to look like different Monarch butterflies and thus avoid being eaten.

"This mimicry is not just a simple change of colour and pattern", says Prof ffrench-Constant, "but the females also lose their characteristic swallow tails and even fly slowly like Monarch butterflies".

This unique combination of shape-shifting makes the mimicry more convincing for predatory birds and once they learn to avoid one warning pattern, they will then avoid similar looking butterflies.

Dr Martijn Timmermans of Imperial College London, who led the study, said: "The wings of the Mocker Swallowtails have bewildered biologists for almost a century. By pinpointing the switch, we have revealed a unique mechanism. It is really exciting to show that all this diversity is determined by variation in just a single gene."

The genetic switch appears to be the gene called 'engrailed', a gene previously shown to be important in patterning the early embryo of fruit flies. The engrailed gene belongs to a family of genes called transcription factors that switch on networks of genes responsible for all aspects of development.

Previously the engrailed gene has been shown to be important in setting up patterning in developing fruit fly embryos, however, nature seems to have redeployed this gene into much later patterning - the patterning of a butterfly wing. This allows the engrailed gene to function both early in embryo development and then later as a master mimicry switch gene by changing the colour and shape of the butterflies wing.

"We still have a lot to learn" adds ffrench-Constant, "we don't really understand how this gene can control such a wide range of characteristics and how this mimicry is limited only to the female of the species. However, such questions are bound to provide significant challenges for the team in the future."
-end-
Richard ffrench-Constant is a Professor of Molecular Natural History based at the Centre for Ecology and Conservation at the University of Exeter's Penryn Campus in Cornwall.

'Comparative genomics of the mimicry switch in Papilio dardanus' by Martijn J. T. N. Timmermans, Simon W. Baxter, Rebecca Clark, David G. Heckel, Heiko Vogel, Steve Collins, Alexie Papanicolaou, Iva Fukova, Mathieu Joron, Martin J. Thompson, Chris D. Jiggins,Richard H. Ffrench-Constant and Alfried P. Vogler is published today in the journal Proceedings of the Royal Society B.

University of Exeter

Related Butterflies Articles from Brightsurf:

Two centuries of Monarch butterflies show evolution of wing length
North America's beloved Monarch butterflies are known for their annual, multi-generation migrations in which individual insects can fly for thousands of miles.

Vagabonding female butterflies weigh in on reproductive strategies
A new study by researchers from the National Centre for Biological Sciences (NCBS), Bengaluru, published today in the Royal Society's journal Biology Letters, shows that dispersals, when undertaken by butterflies in search of unpredictable resources, selectively burden the egg-carrying females on their long flights.

Migration and dispersal of butterflies have contrasting effect on flight morphology
Migration and dispersal are vastly different activities with very different benefits and risks.

Scientists unravel the evolution and relationships for all European butterflies in a first
For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent.

Human handling stresses young monarch butterflies
People handle monarch butterflies. A lot. Every year thousands of monarch butterflies are caught, tagged and released during their fall migration by citizen scientists helping to track their movements.

What do soap bubbles and butterflies have in common?
A unique butterfly breeding experiment gave UC Berkeley researchers an opportunity to study the physical and genetic changes underlying the evolution of structural color, responsible for butterflies' iridescent purples, blues and greens.

Bacteria get free lunch with butterflies and dragonflies
Recent work from Deepa Agashe's group at NCBS has found that unlike other insects, neither butterflies nor dragonflies seem to have evolved strong mutualisms with their bacterial guests.

How some butterflies developed the ability to change their eyespot size
New insight on how a butterfly species developed the ability to adjust its wing eyespot size in response to temperature has been published today in eLife.

Butterflies can acquire new scent preferences and pass these on to their offspring
Two studies from the National University of Singapore demonstrate that insects can learn from their previous experiences and adjust their future behaviour for survival and reproduction.

Beating the heat in the living wings of butterflies
Columbia engineers and Harvard biologists discover that butterflies have specialized behaviors and wing scales to protect the living parts of their wings.

Read More: Butterflies News and Butterflies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.