Nav: Home

Short regulatory gene spotted

June 11, 2017

An epigenetic mechanism regulating gene activity has been revealed by a KAUST-led international team of researchers investigating interactions between the human genome and its environment in adult tissues1.

Valerio Orlando's lab at KAUST looks at the role of Ezh1, a gene whose function in mature tissues has remained unclear for 25 years. Like its twin Ezh2, Ezh1, along with a partner protein, encodes a protein involved in tagging genes to repress their activity. However, while Ezh2 mutations have been linked to cancer and developmental defects, mice lacking Ezh1 seem to develop normally.

Several years ago, Professor Orlando's group observed Ezh1 attached to the promoter of many genes that are normally switched on. "We saw this prototypical epigenetic repressor sitting on active genes, and our interpretation was that it's there to provide the ability to repress them," said Orlando. Hypothesizing that repression might be useful under stress, the team chemically stressed muscle cells and observed repression only in cells expressing Ezh1. Stress spurred Ezh1 into action, tagging genes with a repressive marker that could later be removed, a reversible response that Orlando calls "cell plasticity": the ability to adapt to a dynamic environment.

A turning point in the conception of Ezh1 came when the team discovered a truncated version of the protein. Many human genes encode several slightly different versions of a protein, known as isoforms, and the researchers realized that an additional band lurking in some images was in fact a shorter isoform of Ezh1.

"Once our eyes were redirected to the short version, we immediately understood a number of things," recalled Orlando. The truncated isoform was in the cytoplasm rather than the nucleus, and the team demonstrated that it acts as an environmental sensor regulating the activity of the full-length protein. Ezh1 needs a partner protein in order to tag genes, but the short isoform binds to the partner, trapping it in the cytoplasm, "like keeping that protein on a leash." In stressed cells, the short isoform is degraded, releasing the partner to join full-length Ezh1 in the nucleus. Once the stress stops, short-Ezh1 once again traps the partner, stopping long-Ezh1 from acting, and the repressive tags are removed.

These findings reveal a new landscape of genetic regulation for researchers to explore, where interactions occur between isoforms of a single gene rather than products of different genes. "This offers a new paradigm for gene regulation, linking the genome with the environment," said Orlando. "It's a very exciting perspective."

King Abdullah University of Science & Technology (KAUST)

Related Stress Articles:

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
How plants cope with stress
With climate change comes drought, and with drought comes higher salt concentrations in the soil.
Gene which decreases risk of social network-related stress, increases finance-related stress risk
Researchers have discovered that the same gene which increases your risk of depression following financial stress as you grow older also reduces your chance of depression associated with friendship and relationships stresses when young- your social network.
Innate stress
A team of researchers from the Higher School of Economics and the RAS Vavilov Institute of General Genetics has been able to statistically monitor the impact of the monoamine oxidase A gene (MAOA) on the subjective evaluation of well-being among men.
Is a stress shot on the horizon?
Rats immunized weekly for three weeks with beneficial bacteria showed increased levels of anti-inflammatory proteins in the brain, more resilience to the physical effects of stress, and less anxiety-like behavior.
More Stress News and Stress Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.