Key difference between humans and other mammals is skin deep, says study

June 11, 2018

While humans and other species share some of the same genetic information, new research found that humans are unique among mammals when it comes to the types and diversity of microorganisms on our skin. This difference could have implications for our health and immune systems.

"We were quite surprised when we saw just how distinct we humans are from almost all other mammals, at least in terms of the skin microbes that we can collect with a swab," said Josh Neufeld, a professor of biology at the University of Waterloo and senior author of the study.

A team made up of researchers from the University of Waterloo and the University of Guelph conducted the most comprehensive survey of mammals to date and found that human microbiome -- the collection of microorganisms such as bacteria, fungi, and viruses that naturally occur on our skin -- contains significantly less diversity than that of other mammals.

"The first line that gets hit by modern hygienic practices is our skin," said Ashley Ross, a co-author of the study and a graduate student at Waterloo at the time of the research. "Our skin is the largest organ of the body and the main barrier to the external environment."

Living in homes, bathing and wearing clothing may all have contributed to the unique makeup of microbial communities on human skin. Habitat was another important factor linked to the skin microbes on mammals that were sampled for this study.

Despite these important influences on mammalian skin microbial communities, the study found evidence that microbial communities on mammalian skin may have changed over time with their hosts, a phenomenon called phylosymbiosis.

"We were able to measure phylosymbiosis between some of the mammalian classes and the corresponding communities on their skin," said Kirsten Müller, a biology professor at Waterloo and co-author of this study. "It's exciting that we can still see this signal despite the contribution of habitat to the skin microbial community."

The team, which also included J. Scott Weese, a professor at Guelph, plans to further examine whether co-evolution has taken place between skin microbial communities and their hosts, which is one mechanism that may account for their observations of phylosymbiosis.

The study appears this week in the Proceedings of the National Academy of Sciences and received funding from the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes for Health Research funded the project.
-end-


University of Waterloo

Related Microorganisms Articles from Brightsurf:

A more resistant material against microorganisms is created to restore cultural heritage
The study was performed by a research team at the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba and Seville's Institute of Natural Resources and Agrobiology of the Spanish National Research Council

NYUAD study finds gene targets to combat microorganisms binding to underwater surfaces
A group of synthetic biologists at NYU Abu Dhabi (NYUAD) have identified new genetic targets that could lead to safe, biologically-based approaches to combat marine biofouling - the process of sea-based microorganisms, plants, or algae binding to underwater surfaces.

Less flocking behavior among microorganisms reduces the risk of being eaten
When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators.

Are vultures spreaders of microbes that put human health at risk?
A new analysis published in IBIS examines whether bacteria, viruses, and other microorganisms that are present in wild vultures cause disease in the birds, and whether vultures play a role in spreading or preventing infectious diseases to humans and other animal species.

Timing key in understanding plant microbiomes
Oregon State University researchers have made a key advance in understanding how timing impacts the way microorganisms colonize plants, a step that could provide farmers an important tool to boost agricultural production.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.

Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with

New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.

Read More: Microorganisms News and Microorganisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.