Nav: Home

Pandoravirus: Giant viruses invent their own genes

June 11, 2018

Three new members have been isolated and added to the Pandoravirus family by researchers at the Structural and Genomic Information Laboratory (CNRS/Aix?Marseille Université), working with partners at the Large Scale Biology Laboratory (CEA/Inserm/Université Grenoble?Alpes) and at CEA-Genoscope. This strange family of viruses, with their giant genomes and many genes with no known equivalents, surprised the scientists when they were discovered a few years ago. In the 11 June 2018 edition of Nature Communications, researchers offer an explanation: pandoviruses appear to be factories for new genes - and therefore new functions. From freaks of nature to evolutionary innovators, giant viruses continue to shake branches on the tree of life!

In 2013, the discovery of two giant viruses unlike anything seen before blurred the line between the viral and cellular world. Pandoraviruses are as big as bacteria, and contain genomes that are more complex than those found in some eukaryotic organisms (1). Their strange amphora shape and enormous, atypical genome (2) led scientists to wonder where they came from.

The same team has since isolated three new members of the family in Marseille, continental France, Nouméa, New Caledonia, and Melbourne, Australia. With another virus found in Germany, the team compared those six known cases using different approaches. Analyses showed that despite having very similar shapes and functions, these viruses only share half of their genes coding for proteins. Usually, however, members of the same family have more genes in common.

Furthermore, these new members contain a large number of orphan genes, i.e. genes which encode proteins that have no equivalent in other living organisms (this was already the case for the two previously discovered pandoraviruses). This unexplained characteristic is at the heart of many a debate over the origin of viruses. What most surprised researchers was that the orphan genes differed from one pandoravirus to another, making it less and less likely that they were inherited from a common ancestor!

Bioinformatic analysis showed that these orphan genes exhibit features very similar to those of non-coding (or intergenic) regions in the pandoravirus genome. Findings indicate the only possible explanation for the gigantic size of pandoravirus genomes, their diversity and the large proportion of orphan genes they contain: most of these viruses' genes may originate spontaneously and randomly in intergenic regions. In this scenario, genes "appear" in different locations from one strain to another, thus explaining their unique nature.

If confirmed, this groundbreaking hypothesis would make these giant viruses craftsmen of genetic creativity - a central, but still poorly explained component of any understanding of the source of life and its evolution.
-end-
This research received funding from the Bettencourt Schueller Foundation, through the "Coup d'Elan Prize for French Research" awarded to Chantal Abergel in 2014.

Notes:

(1) Organisms whose cells contain nuclei, unlike the two other kingdoms of living organisms, bacteria and archaea.

(2) Up to 2.7 million base pairs.

CNRS

Related Viruses Articles:

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.
Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.
Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.
How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?
Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.
How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.
Viruses under the microscope
Human herpesviruses such as HHV-6 can remain dormant in cells for many years without being noticed.
Ancient origins of viruses discovered
Research published today in Nature has found that many of the viruses infecting us today have ancient evolutionary histories that date back to the first vertebrates and perhaps the first animals in existence.
Attacking flu viruses from two sides
UZH researchers have discovered a new way in which certain antibodies interact with the flu virus.
How bats carry viruses without getting sick
Bats are known to harbor highly pathogenic viruses like Ebola or Marburg and yet they do not show clinical signs of disease.
More Viruses News and Viruses Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab