Nav: Home

'Tricking' bacteria into hydroxylating benzene

June 11, 2018

Nagoya, Japan - Breaking carbon-hydrogen bonds is notoriously difficult in lab chemistry, yet nature does it effortlessly. Now, scientists have used E.coli bacteria to oxidize the C-H bonds in benzene to generate phenol, with a genetically inserted enzyme (cytochrome P450BM3), that originally evolved to target other molecules, long-chain fatty acids.

Getting enzymes to do novel reactions - effectively hijacking the biochemistry of living cells for our own purposes - is generally tricky, involving harsh conditions or genetic modification of the enzymes themselves.

However, researchers at Nagoya University worked around this by using "decoy" molecules, which mimic the native targets (substrates) of naturally occurring enzymes, to activate the desired reaction.

As reported in Angewandte Chemie International Edition, the research team created a compound - dubbed C7-Pro-Phe - based on amino acids. This decoy molecule resembles the fatty acids that E.coli metabolizes. Insert the decoy into an E.coli cell, and it will be mis-recognized as a fatty acid, triggering activation of the inserted P450 enzyme. Now supply benzene (C6H6), and the bacteria get busy, oxidizing C6H6 to C6H6O (phenol). No need for the usual lab kit - living cells can do complex chemistry quietly and efficiently.

"The advantage of our system is that C7-Pro-Phe can be easily taken up by the bacteria, where it activates P450BM3 in the cell. This effectively turns each bacterium into a whole-cell biocatalyst," study first author Masayuki Karasawa says. "The cell is an optimal setting for the biochemical reaction. The decoys actually remodel the enzyme's active site, giving us control over aspects of the reaction, such as stereoselectivity."

All that is needed is a ready supply of glucose - which can be recycled from waste products - to feed the E.coli.

Because a naturally occurring - rather than genetically modified - variant of the enzyme is expressed by the E.coli, it is likely that other bacteria could also be modified with the same gene to perform this job. Moreover, different decoys might be suitable for different substrates or bacteria. "A combined program of decoy-screening and mutagenesis could create a versatile toolkit for whole-cell reactions using bacteria," co-author Osami Shoji says.
-end-
The article, "Whole-Cell Biotransformation of Benzene to Phenol Catalysed by Intracellular Cytochrome P450BM3 Activated by External Additives," was published in Angewandte Chemie International Edition at DOI:10.1002/anie.201804924.

Nagoya University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

A Field Guide to Bacteria (Comstock Book)
by Betsey Dexter Dyer (Author)

The Bacteria Book: The Big World of Really Tiny Microbes
by Steve Mould (Author)

Bacteria: Staph, Strep, Clostridium, and Other Bacteria (Class of Their Own (Paperback))
by Judy Wearing (Author)

I Contain Multitudes: The Microbes Within Us and a Grander View of Life
by Ed Yong (Author)

Molecular Genetics of Bacteria, 4th Edition
by Larry Snyder (Author), Joseph E. Peters (Author), Tina M. Henkin (Author), Wendy Champness (Author)

Bacteria: A Very Short Introduction (Very Short Introductions)
by Sebastian G.B. Amyes (Author)

From Bacteria to Bach and Back: The Evolution of Minds
by HighBridge, a Division of Recorded Books

Superbugs: An Arms Race against Bacteria
by William Hall (Author), Anthony McDonnell (Author), Jim O'Neill Chair of a formal Review on Antimicrobial Resistance (AMR) (Author)

The Surprising World of Bacteria with Max Axiom, Super Scientist (Graphic Science)
by Agnieszka Biskup (Author), Anne Timmons (Author), Matt Webb (Author), Krista Ward (Author)

Gut Crisis: How Diet, Probiotics, and Friendly Bacteria Help You Lose Weight and Heal Your Body and Mind
by Robert Keith Wallace (Author), Samantha Wallace (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.