Nav: Home

New aircraft-scheduling models may ease air travel frustrations

June 11, 2018

CHAMPAIGN, Ill. -- Flight schedules that allow for a little carefully designed wiggle room could prevent the frustration of cascading airport delays and cancellations. By focusing on the early phases of flight schedule planning and delays at various scales, researchers have developed models to help create schedules that are less susceptible to delays and easier to fix once disrupted.

Passenger and resource reaccommodation in the wake of a delay costs the airlines - an industry that operates on less than two percent profit margins - billions of dollars each year. A reduction in delays, cancellations and their cascading downstream impacts would greatly benefit the U.S. airline industry and travelers, the researchers said.

The study, published in the journal Computers and Operations Research, looks at early phase flight schedule and aircraft route planning. It takes a proactive approach in designing cascade-resistant schedules, rather than the reactive approach of trying to manage delays after they occur.

"There is an overwhelming amount of data generated from airline on-time performance records," said Lavanya Marla, an industrial and enterprise systems engineering professor and lead author. "It is challenging to find the best model to quantify the uncertainty in the aviation system in order to improve on-time performance and cost savings. Our research shows that the existing models are unable to distinguish the cascading downstream impact of one solution over another, which is critical to the airlines for decision-making."

The team, which also includes Vikrant Vaze, a professor of engineering at Dartmouth College, and Cynthia Barnhart, chancellor and a professor of engineering at the Massachusetts Institute of Technology, used historical data from U.S. airlines to tweak aircraft routing to help prevent and minimize delays from the extent to which they exist today.

Aircraft routing refers to the route that a single aircraft takes between Federal Aviation Administration-mandated maintenance checks that typically occur on a 72-hour cycle and multiple flights. The team hones in on this layer of the system because it hits a sort of sweet spot where they feel scheduling adjustments can make the most impact. "Of the tens of billions of dollars of delay costs that occur annually, almost a third are a result of delay-cascading effects through aircraft routings," Vaze said. "So this is a very important layer of the system to focus on."

The researchers constructed different models to help determine what kinds of solutions offer the most flexibility in reducing delay cascades. One set of models focuses on purely avoiding the outcomes of the worst-case delays only, and a second considers all kinds of delays that occur - extreme to common day-to-day.

The researchers evaluated the various models by observing the percentage of flight delays and passenger disruptions that result from the different kinds of delays. Marla and her team found that having the ability to control the less severe day-to-day types of delays results in the most benefit for passengers.

"It is not that one or the other model by itself gives a better solution," Marla said. "They give different solutions. The best choice depends on the patterns of evolving delays, the most relevant evaluation metrics, and on which solution aligns best with the priorities of the Department of Transportation, the passengers and the airline industry."

"The key to enhancing the performance of complex and uncertain systems like those in aviation often lies in intelligently combining sophisticated mathematical models, careful attention to real-world data, and detailed simulation tools for system evaluation," Barnhart said.
-end-
The U. of I. department of industrial and enterprise system engineering supported this research.

Editor's notes:

To reach Lavanya Marla, call 217-300-5892; lavanyam@illinois.edu.

The paper "Robust optimization: Lessons learned from aircraft routing" is available online and from the U. of I. News Bureau. DOI: 10.1016/j.cor.2018.04.011

University of Illinois at Urbana-Champaign

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.