Nav: Home

McLean investigators suggest that brain circuits could unlock new psychiatric treatments

June 11, 2018

A McLean Hospital scientific team's comprehensive analysis of recent research into how the brain shapes responses to cognitive and emotional challenges has revealed the potential for new brain treatments for psychiatric conditions that target specific brain circuits. The detailed review is available online in the journal Trends in Pharmacological Sciences.

"At almost any point in time, brain activity is determined by a dynamic balancing act between excitatory and inhibitory neurotransmitters. These shifts of excitation and inhibition sculpt essentially all brain functions, including cognition, emotion, and the brain's protective mechanisms against drug dependence," explained lead author Elif Engin, PhD, associate neuroscientist in the Laboratory of Genetic Neuropharmacology at McLean Hospital and assistant professor of psychiatry at Harvard Medical School. "Large disruptions of this delicate balance can lead to epileptic seizures, while more subdued disruptions underlie many disorders, including autism spectrum disorders and several psychiatric disorders."

Through her own lab work, as well as her findings as part of the review of recent literature, Engin believes that having greater clarity on the impact of certain circuits within the brain will not only allow for better understanding of brain function, but also better development of treatment options.

According to Engin, the major chemical responsible for inhibition in the brain is gamma-aminobutyric acid (GABA).

GABA binds to specific proteins on the surface of nerve cells, GABAA receptors, to inhibit neuronal activity. These receptors come in different configurations, called subtypes, and over the past 20 years, researchers have learned a lot about the functions of each receptor subtype. A variety of drugs, including benzodiazepines (e.g., Valium or Xanax) and general anesthetics, increase the activity of these receptors. It was found, for example, that one receptor subtype mediated sedation while another subtype mediated the anxiety-reducing activity of such drugs.

While defining receptor subtype functions has thus provided a blueprint for the development of new drugs, knowledge about how specific circuits and specific cell populations in the brain shape specific behaviors may further expand and enhance treatments. "In our review, we introduced the novel concept of 'circuit pharmacology,' a term describing how specific GABAA receptor subtypes in circuit- and cell type-specific locations mediate pharmacological actions," said Engin. "It is increasingly apparent that a better understanding of the role of GABAA receptors in defined locations of neuronal circuits not only increases our fundamental understanding of brain function, but also opens avenues for the development of new therapeutic strategies."

The authors highlighted their own work in which they studied the role of specific GABAA receptor subtypes in subregions of the hippocampus. They found that a specific type of receptor in the granule cells of the region known as the dentate gyrus is essential for the ability to distinctly form and recall memories that have similar features. For instance, if you shop at two different grocery stores regularly, you may have a hard time remembering where your favorite cereal is usually placed in each store. As grocery stores have quite similar layouts, the memories from the two stores may interfere with each other. Similarly, if one of the stores reorganizes its products and starts placing your favorite cereal in a new location, you might have difficulty learning this new location because of interference between your old memory and the new one.

While the grocery store example may be a trivial example, the ability to distinguish between similar patterns, also called pattern separation, is essential for normal cognitive function. "As pattern separation deficits have been observed in patients with schizophrenia and autism spectrum disorders, our work may suggest that chemical compounds augmenting the activity of these receptors might be useful in treating patients with these disorders," said Engin.

The review authors also studied how anxiety and fear are controlled in the brain. While it has been known for almost two decades that drugs like Valium require a specific subtype of the GABAA receptor for their anxiety-reducing action, the authors were recently able to identify neuronal circuits in the hippocampus that are essential for this drug action. Further, they found that distinct cell populations in the hippocampus are required for reducing anxiety and for reducing fear.

"Finding such clearly distinct hippocampal microcircuits that apparently regulate anxiety and fear with mutual exclusivity opens up the possibility that scientists may be able to develop circuit-specific therapies that specifically target anxiety or fear with minimal side effects on other behaviors," said Engin. "We are only in the very early stages of understanding how GABAA receptors in defined neuronal populations and circuits modulate brain function and mediate drug effects. An expansion of circuit pharmacology knowledge may eventually result in the development of novel therapeutic concepts for the treatment of major neuropsychiatric disorders."
-end-
McLean Hospital has a continuous commitment to put people first in patient care, innovation and discovery, and shared knowledge related to mental health. In 2017, it was named the #1 hospital for psychiatric care in the United States by U.S. News & World Report. McLean Hospital is the largest psychiatric affiliate of Harvard Medical School and a member of Partners HealthCare. For more information, please visit mcleanhospital.org or follow us on Facebook or Twitter.

McLean Hospital

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...