Nav: Home

New microorganism for algae biomass to produce alternative fuels

June 11, 2019

The biorefinery technology uses biomass as a feedstock and converts it to energy and other beneficial byproducts. It is drawing attention as an eco-friendly and sustainable technology to prepare for depletion of fossil fuels. However, the types of biomass that can be used for this technology are very limited. Starch crops such as corns are utilized as biomass (mainly glucose), but they are easily consumed by microorganism. Such processes have limitations in satisfying the growing demands of bioproducts, for example, the consumption of food resources and limited cultivation capabilities.

To overcome such limitations, the joint research team of POSTECH and Seoul National University developed a new microorganism, which they named as Vibrio sp. dhg. In their study, they successfully demonstrated that Vibrio sp. dhg can be a promising microbial platform for the biorefinery of brown macroalgae which can replace starch-crop biomass. Their research is published in the latest publication of the world-renowned journal, Nature Communications on June 6th, 2019.

Continuing efforts on studying utilization of non-edible biomass have been made and brown macroalgae have been suggested as an alternative feedstock. Brown macroalgae grow two to three times faster than the starch crops and only require light and seawater to grow. Although they are only consumed in a few countries such as Korea, they are not eaten in most of the countries. Because of these advantages, they seem to be a reasonable alternative choice. However, there was no industrial microorganism that can easily metabolize polysaccharides like alginic acid in algae and it was difficult to develop the process for utilizing algae as biomass.

To solve this problem, Prof. Gyoo Yeol Jung and his research team at POSTECH and Prof. Sang Woo Seo and his research group at Seoul National University successfully developed a new microorganism, Vibrio sp. dgh, that can rapidly metabolize alginic acid in algae and genetic engineering techniques optimized for this new microorganism based on omics analysis. In addition, they succeeded in developing biorefinery processes that directly produce ethanol (biofuel), 2,3-butanediol (raw material for plastics), lycopene (physiologically active substance) and other various chemical products by artificially manipulating the metabolic pathway of Vibrio sp. dhg.

Especially, the new artificial microorganism they found has many advantages and brings great expectations of its future usage. For example, Vibrio sp. dhg can not only use brown macroalgae as biomass but also other various biomass more efficiently than the conventional industrial microorganisms (E. coli, yeast). Also, their growth rate is two times faster and they convert biomass more rapidly. Therefore, it is expected to be used for improving the efficiency of microbial fermentation process using not only algae but also conventional gluose-based biomass.

Prof. Jung who led the research team explained, "The microorganism that we found, Vibrio sp. dhg can rapidly metabolize algae-derived carbon sources. So, it can be utilized in producing eco-friendly value-added chemicals. Also, it can convert raw materials to high value-added chemicals exceptionally faster than the existing industrial microorganism. Therefore, we expect that this will exceedingly improve the efficiency and economic feasibility of microbial fermentation process which has been studied globally."
-end-
This research was supported by the C1 Gas Refinery Program, the Global Research Laboratory Program, the Bio & Medical Technology Development Program (Korea Bio Grand Challenge) through the National Research Foundation of Korea and Creative-Pioneering Researchers Program through Seoul National University.

Pohang University of Science & Technology (POSTECH)

Related Biomass Articles:

Ecology insights improve plant biomass degradation by microorganisms
Microbes are widely used to break down plant biomass into sugars, which can be used as sustainable building blocks for novel biocompounds.
Termite gut holds a secret to breaking down plant biomass
In the Microbial Sciences Building at the University of Wisconsin-Madison, the incredibly efficient eating habits of a fungus-cultivating termite are surprising even to those well acquainted with the insect's natural gift for turning wood to dust.
Scientists harness solar power to produce clean hydrogen from biomass
A team of scientists at the University of Cambridge has developed a way of using solar power to generate a fuel that is both sustainable and relatively cheap to produce.
How much biomass grows in the savannah?
The ability of the savannahs to store the greenhouse gas carbon dioxide is ultimately determined by the amount of aboveground woody biomass.
Economics of forest biomass raise hurdles for rural development
The use of residual forest biomass for rural development faces significant economic hurdles that make it unlikely to be a source of jobs in the near future, according to an analysis by economists.
Biomass heating could get a 'green' boost with the help of fungi
In colder weather, people have long been warming up around campfires and woodstoves.
Unraveling the science behind biomass breakdown
Using the Titan supercomputer, an ORNL team created models of up to 330,000 atoms that led to the discovery of a THF-water cosolvent phase separation on the faces of crystalline cellulose fiber.
US holds potential to produce billion tons of biomass, support bioeconomy
The 2016 Billion-Ton Report, jointly released by the US Department of Energy and Oak Ridge National Laboratory, concludes that the United States has the potential to sustainably produce at least 1 billion dry tons of nonfood biomass resources annually by 2040.
Improving poor soil with burned up biomass
Researchers at the RIKEN Center for Sustainable Resource Science in Japan have shown that torrefied biomass can improve the quality of poor soil found in arid regions.
Women cooking with biomass fuels more likely to have cataracts
Women in India who cook using fuels such as wood, crop residues and dried dung instead of cleaner fuels are more likely to have visually impairing nuclear cataracts, according to a new study by the London School of Hygiene & Tropical Medicine.

Related Biomass Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...