Nav: Home

New microorganism for algae biomass to produce alternative fuels

June 11, 2019

The biorefinery technology uses biomass as a feedstock and converts it to energy and other beneficial byproducts. It is drawing attention as an eco-friendly and sustainable technology to prepare for depletion of fossil fuels. However, the types of biomass that can be used for this technology are very limited. Starch crops such as corns are utilized as biomass (mainly glucose), but they are easily consumed by microorganism. Such processes have limitations in satisfying the growing demands of bioproducts, for example, the consumption of food resources and limited cultivation capabilities.

To overcome such limitations, the joint research team of POSTECH and Seoul National University developed a new microorganism, which they named as Vibrio sp. dhg. In their study, they successfully demonstrated that Vibrio sp. dhg can be a promising microbial platform for the biorefinery of brown macroalgae which can replace starch-crop biomass. Their research is published in the latest publication of the world-renowned journal, Nature Communications on June 6th, 2019.

Continuing efforts on studying utilization of non-edible biomass have been made and brown macroalgae have been suggested as an alternative feedstock. Brown macroalgae grow two to three times faster than the starch crops and only require light and seawater to grow. Although they are only consumed in a few countries such as Korea, they are not eaten in most of the countries. Because of these advantages, they seem to be a reasonable alternative choice. However, there was no industrial microorganism that can easily metabolize polysaccharides like alginic acid in algae and it was difficult to develop the process for utilizing algae as biomass.

To solve this problem, Prof. Gyoo Yeol Jung and his research team at POSTECH and Prof. Sang Woo Seo and his research group at Seoul National University successfully developed a new microorganism, Vibrio sp. dgh, that can rapidly metabolize alginic acid in algae and genetic engineering techniques optimized for this new microorganism based on omics analysis. In addition, they succeeded in developing biorefinery processes that directly produce ethanol (biofuel), 2,3-butanediol (raw material for plastics), lycopene (physiologically active substance) and other various chemical products by artificially manipulating the metabolic pathway of Vibrio sp. dhg.

Especially, the new artificial microorganism they found has many advantages and brings great expectations of its future usage. For example, Vibrio sp. dhg can not only use brown macroalgae as biomass but also other various biomass more efficiently than the conventional industrial microorganisms (E. coli, yeast). Also, their growth rate is two times faster and they convert biomass more rapidly. Therefore, it is expected to be used for improving the efficiency of microbial fermentation process using not only algae but also conventional gluose-based biomass.

Prof. Jung who led the research team explained, "The microorganism that we found, Vibrio sp. dhg can rapidly metabolize algae-derived carbon sources. So, it can be utilized in producing eco-friendly value-added chemicals. Also, it can convert raw materials to high value-added chemicals exceptionally faster than the existing industrial microorganism. Therefore, we expect that this will exceedingly improve the efficiency and economic feasibility of microbial fermentation process which has been studied globally."
This research was supported by the C1 Gas Refinery Program, the Global Research Laboratory Program, the Bio & Medical Technology Development Program (Korea Bio Grand Challenge) through the National Research Foundation of Korea and Creative-Pioneering Researchers Program through Seoul National University.

Pohang University of Science & Technology (POSTECH)

Related Biomass Articles:

How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
Whole-tree harvesting could boost biomass production
Making the shift to renewable energy sources requires biomass, too.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Symbiotic upcycling: Turning 'low value' compounds into biomass
Kentron, a bacterial symbiont of ciliates, turns cellular waste products into biomass.
New microorganism for algae biomass to produce alternative fuels
Professor Gyoo Yeol Jung and his research team utilized algae that grow three times faster than starch crops and succeeded in producing biofuel and biochemicals.
Light energy and biomass can be converted to diesel fuel and hydrogen
A research group led by Professor WANG Feng at the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences recently developed a method to produce diesel fuel and hydrogen by exploiting light energy (solar energy or artificial light energy) and biomass-derived feedstocks.
Converting biomass by applying mechanical force
German nanoscientists have succeeded in demonstrating a new reaction mechanism to cleave cellulose efficiently.
Coral reef parks protecting only 40 percent of fish biomass potential
Marine scientists from WCS (Wildlife Conservation Society) and other groups examining the ecological status of coral reefs across the Indian and Pacific oceans have uncovered an unsettling fact: even the best coral reef marine parks contain less than half of the fish biomass found in the most remote reefs that lie far from human settlements.
New insights into radial expansion of plants can boost biomass production
Besides the obvious longitudinal growth, plants also enlarge in the radial sense.
More Biomass News and Biomass Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.