Nav: Home

Learning from nature's bounty: New libraries for drug discovery

June 11, 2019

Natural products, or their close derivatives, make some of our most potent medicines, among which macrocycles with their large carbon-rich ring systems are one class. The size and complexity of macrocycles has made it difficult to emulate and build on Nature's success in the laboratory. By completing a complex molecular synthesis of these compounds attached to a unique identifying DNA strand, the Chemists of the University of Basel have built a rich collection of natural product-like macrocycles that can be mined for new medicines as the researchers report in the scientific journal Angewandte Chemie.

Natural evolution has created an incredible diversity of small molecular structures that perturb living systems and are therefore used as drugs in medicinal applications. Although several dozen approved medicines are macrocyclic structures, nearly all of these are natural products or close derivatives.

To find new lead compounds in drug research, huge libraries with diverse structures are required - or simply put, rich collections of molecules. Medicinal chemists have failed to imitate Nature's approach to bioactive macrocyclic molecules - and their long syntheses precluded the creation of large screening libraries, which are essential for identifying drug leads.

A challenge for synthetic chemistry

Researchers at the chemistry department of the University of Basel have now completed a total synthesis of over one million macrocycles that incorporate structural elements often observed in natural biologically active macrocycles.

The synthesis is based on the split-and-pool principle: Before a synthesis step, the whole library is split. Then each fraction is coupled with one of various building blocks and the newly built molecules are labeled with a covalently attached DNA sequence. Before the next synthesis step all fractions are pooled again.

This leads to the cross combination of all diversity elements. Each combination is attached to a specific DNA barcode. Through this approach all 1.4 million members of the pooled library could be screened in a single experiment. Next generation DNA sequencing on the selected libraries could then identify macrocycles that bind target proteins.

Macrocycles are unlikely yet potent drugs

Most small molecule drugs are hydrophobic molecules ("water repellants") with a low molecular weight (less than 500 daltons). Because of this, these drugs tend to slip without problem through cell membranes, exposing them to the great majority of disease-relevant proteins. Macrocycles buck this trend because they are often extremely large (more than 800 daltons) by medicinal chemistry standards, and yet they passively diffuse through cell membranes.

Researchers speculate that this special property of natural macrocycles derives from their ability to adapt their spatial structure (conformation) depending on the medium. Hence in the largely water-based environment of the blood stream and cell interior the macrocycles would expose their more water compatible (hydrophilic) groups to remain soluble. Once the hydrophobic cell membrane is encountered a conformational shift could allow the molecules to expose their hydrophobic face, making them soluble in membranes and hence capable of passive diffusion.

New applications possible

Given their unique properties, macrocycles are conspicuously under-represented in medicinal chemistry. This is largely due to the synthetic challenge of creating a large collection of macrocycles for screening. With the help of a barcoding DNA strand the Gillingham group has overcome this hurdle by developing an efficient seven-step synthesis of a natural product-like macrocycle library all pooled in one solution.

"With a large diverse collection of macrocycles available for screening, a more data-rich investigation of the properties of these extraordinary molecules can begin", comments Dennis Gillingham. "This might reveal future medicinal applications, targets or active principles."
-end-
Cedric Stress, Basilius Sauter, Lukas Schneider, Timothy Sharpe, Dennis Gillingham

A DNA-encoded chemical library incorporating elements of natural macrocycles

Angewandte Chemie International Edition (2019), doi: 10.1002/anie.201902513

University of Basel

Related Molecules Articles:

Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
Hand-knitted molecules
Molecules are usually formed in reaction vessels or laboratory flasks.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Data storage using individual molecules
Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled.
Small molecules come into focus
Many biologically important small molecules, like hormones and amino acids, are too small to be measured by conventional detection methods.
We now know how RNA molecules are organized in cells
With their new finding, Canadian scientists urge revision of decades-old dogma on protein synthesis
A new way to create molecules for drug development
Chemists at The Ohio State University have developed a new and improved way to generate molecules that can enable the design of new types of synthetic drugs.
How ions gather water molecules around them
Charged particles in aqueous solutions are always surrounded by a shell of water molecules.
More Molecules News and Molecules Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.