Nav: Home

New family on the block: A novel group of glycosidic enzymes

June 11, 2019

A group of researchers from Japan has discovered a novel enzyme from a soil fungus. In their study published in the Journal of Biological Chemistry, they speculate that this enzyme plays important roles in the soil ecosystem, and then describe its structure and action. Once the usefulness of the main product of this enzyme is better understood in the future, this enzyme could also be exploited for industrial purposes. The researchers state, "Our study sheds light on the fact that new enzymes are still being discovered. It possibly lays the foundation for further research to identify new enzymes that yield carbohydrates that were once thought to be extremely difficult to prepare."

Carbohydrates are probably the most versatile organic molecules on the planet, as they play various roles in organisms. Accordingly, the functions and structures of enzymes related to carbohydrate are just as diverse. Glycoside hydrolases (GHs) are enzymes that break "glycosidic bonds" in carbohydrates or sugars. GHs are the largest known group of carbohydrate-related enzymes, and the group keeps expanding. A novel family, GH144, was identified by the same research group in the past from a soil bacterium Chitinophaga pinensis and called CpSGL.

The enzyme endo-β-1,2-glucanase (SGL), a member of the GH family, is involved in the metabolism of β-1,2-glucan, which is a polysaccharide (sugar chain) composed of β-1,2-linked glucose units. β-1,2-glucan serves as an extracellular carbohydrate that plays important roles in the symbiosis or infectivity of some bacteria. However, the role of SGLs in eukaryotic cells and their relationship with bacterial SGLs are not well understood.

This group of Japanese scientists from different universities and a research institute, working on a collaborative project led by Masahiro Nakajima, has discovered a novel SGL enzyme from a soil fungus, Talaromyces funiculosus. The enzyme, hereafter called TfSGL, showed no significant sequence similarity to other known GH families. However, it showed significant similarities to other eukaryotic proteins with unknown functions. The researchers thus propose that TfSGL and these related GH enzymes be classified into a new family, which they call GH162.

Usually when scientists find a novel protein--in this case, an enzyme--they further clone the gene containing the sequence that encodes it to better understand its functionality. This clone is called a "recombinant" sequence. The recombinant TfSGL protein (TfSGLr) was found to break down both linear and cyclic β-1,2-glucans to sophorose, a simpler and smaller carbohydrate.

Stereochemical analysis done by these researchers revealed that it is an inverting enzyme, a characteristic that is associated with its mechanism of action. They found that TfSGL breaks down sophorooligosaccharides (β-1,2-glucooligosaccharides), with degree of polymerization of 5 or more, to the disaccharide sophorose as the main product.

X-ray crystal structure analysis revealed that the overall structure of TfSGLr is similar to that of members of the GH144 family mentioned earlier, notably CpSGL. However, the two enzymes are very different in amino acid sequences, as well as substrate recognition sites and the positions of the base catalyst. This difference indicates that TfSGL and its homologs probably make up a novel family, and that there could be a molecular evolutionary relationship between GH144 and GH162.

In fact, most TfSGL homologs are found in eukaryotic organisms, particularly fungi (Basidiomycota and Ascomycota), and slime molds (Mycetozoa). Some of these species are associated with the rhizosphere, which is the ecosystem around the root and the soil, where the metabolism of cyclic β-1,2-glucan might occur as part of this symbiotic relationship with plants. Other species are parasitic, and thus, it is believed that the cyclic β-1,2-glucan might be used to reduce immune responses in hosts. TfSGL homologs are also speculated to be involved in interactions with other organisms.

This novel enzyme, TfSGL, breaks down β-1,2-glucan into sophorose. According to Nakajima, "As the functions and applications of sophorose become more apparent in the future, the enzyme could potentially be used for sophorose production. β-Glucanases already play an important role in our lives, as they are widely used in biofuel production.

Nakajima concludes by surmising, "The structures of sugar chains are complex and diverse, and sugar chains are also involved in various life phenomena. Synthesis and degradation of such diverse sugar chain structures are performed by enzymes, but only one end of the diversity seems to have been understood. With our research, we hope to identify genes encoding novel enzymes that break down sugar chains and yield carbohydrates that were once considered extremely difficult to prepare."
To receive news releases from the Tokyo University of Science, contact

Tokyo University of Science

Related Enzymes Articles:

Fungal enzymes team up to more efficiently break down cellulose
Cost-effectively breaking down bioenergy crops into sugars that can then be converted into fuel is a barrier to commercially producing sustainable biofuels.
How enzymes communicate
Freiburg scientists explain the cell mechanism that transforms electrical signals into chemical ones.
Pac-Man-like CRISPR enzymes have potential for disease diagnostics
UC Berkeley researchers have found 10 new variants of the Cas13a enzyme, the Pac-Man of the CRISPR world, that hold promise for disease diagnostics.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universit├Ąt Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
New studies unravel mysteries of how PARP enzymes work
A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.
Understanding enzymes
A new tool can help researchers more accurately identify enzymes present in microbiomes and quantify their relative abundances.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Research finds enzymes essential for DNA repair
Scientists at The Australian National University and Heidelberg University in Germany have found an essential component in the DNA repair process which could open the door to the development of new cancer drugs.
New step towards clean energy production from enzymes
Oxygen inhibits hydrogenases, a group of enzymes that are able to produce and split hydrogen.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.

Related Enzymes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...