Nav: Home

Citizen scientists re-tune Hubble's galaxy classification

June 11, 2019

Hundreds of thousands of volunteers have helped to overturn almost a century of galaxy classification, in a new study using data from the longstanding Galaxy Zoo project. The new investigation, published in the journal Monthly Notices of the Royal Astronomical Society, uses classifications of over 6000 galaxies to reveal that "well known" correlations between different features are not found in this large and complete sample.

Almost 100 years ago, in 1927, astronomer Edwin Hubble wrote about the spiral galaxies he was observing at the time, and developed a model to classify galaxies by type and shape. Known as the "Hubble Tuning Fork" due to its shape, this model takes account of two main features: the size of the central region (known as the 'bulge'), and how tightly wound any spiral arms are.

Hubble's model soon became the authoritative method of classifying spiral galaxies, and is still used widely in astronomy textbooks to this day. His key observation was that galaxies with larger bulges tended to have more tightly wound spiral arms, lending vital support to the 'density wave' model of spiral arm formation.

Now though, in contradiction to Hubble's model, the new work finds no significant correlation between the sizes of the galaxy bulges and how tightly wound the spirals are. This suggests that most spirals are not static density waves after all.

Galaxy Zoo Project Scientist and first author of the new work, Professor Karen Masters from Haverford College in the USA explains: "This non-detection was a big surprise, because this correlation is discussed in basically all astronomy textbooks - it forms the basis of the spiral sequence described by Hubble."

Hubble was limited by the technology of the time, and could only observe the brightest nearby galaxies. The new work is based on a sample 15 times larger from the Galaxy Zoo project, where members of the public assess images of galaxies taken by telescopes around the world, identifying key features to help scientists to follow up and analyse in more detail.

"We always thought that the bulge size and winding of the spiral arms were connected", says Masters. "The new results suggest otherwise, and that has a big impact on our understanding of how galaxies develop their structure."

There are several proposed mechanisms for how spiral arms form in galaxies. One of the most popular is the density wave model - the idea that the arms are not fixed structures, but caused by ripples in the density of material in the disc of the galaxy. Stars move in and out of these ripples as they pass around the galaxy.

New models however suggest that some arms at least could be real structures, not just ripples. These may consist of collections of stars that are bound by each other's gravity, and physically rotate together. This dynamic explanation for spiral arm formation is supported by state-of-the art computer models of spiral galaxies.

"It's clear that there is still lots of work to do to understand these objects, and it's great to have new eyes involved in the process", adds Brooke Simmons, Deputy Project Scientist for the Galaxy Zoo project.

"These results demonstrate that, over 170 years after spiral structure was first observed in external galaxies, we still don't fully understand what causes these beautiful features."
-end-


Royal Astronomical Society

Related Spiral Arms Articles:

Researchers model how octopus arms make decisions (+ video)
Researchers studying the behavior and neuroscience of octopuses have long suspected that the animals' arms may have minds of their own.
Hubble spots a stunning spiral galaxy
NGC 2903 is located about 30 million light-years away in the constellation of Leo (the Lion), and was studied as part of a Hubble survey of the central regions of roughly 145 nearby disk galaxies.
'Nightmarish' antlions' spiral digging techniques create effective and deadly traps
A team of biologists and physicists, led by the University of Bristol, have uncovered new insights into how antlions - one of the fiercest and most terrifying predators in the insect kingdom - build their deadly pit traps.
Sac with spiral surface patterns facilitate substance delivery
In a new study published in EPJE, Francesco Serafin, affiliated with both Syracuse University, New York, and the Kavli Institute for Theoretical Physics at UCSB, USA, and his supervisors determine the conditions under which it becomes easier for sac to pass through biological membranes and potentially deliver molecules attached to these them at specific locations.
No more Iron Man: submarines now have soft, robotic arms
The human arm can perform a wide range of extremely delicate and coordinated movements.
More Spiral Arms News and Spiral Arms Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...