Nav: Home

Saturn's moon Mimas, a snowplough in the planet's rings

June 11, 2019

The Solar System's second largest planet both in mass and size, Saturn is best known for its rings. These are divided by a wide band, the Cassini Division, whose formation was poorly understood until very recently. Now, researchers* from the CNRS, the Paris Observatory - PSL and the University of Franche-Comté have shown that Mimas, one of Saturn's moons, acted as a kind of remote snowplough, pushing apart the ice particles that make up the rings. The findings are the result of two studies supported by the International Space Science Institute and CNES, the French space agency, published simultaneously in June 2019 in Monthly Notices of the Royal Astronomical Society.

Saturn's rings are made up of ice particles whose orbital velocity increases the closer they are to the planet. The Cassini Division is a wide, dark band located between Saturn's two most visible rings, in which the particle density is considerably lower than that inside the rings. The researchers suspected a link between Mimas, one of Saturn's moons, and the band, since there is a region at the inner edge of the Division where the particles orbit around Saturn exactly twice as fast as Mimas. This phenomenon, known as orbital resonance, pushes the ice particles apart, producing a relatively narrow gap. Scientists from CNRS, the Paris Observatory - PSL and the University of Franche-Comté have now shown that Mimas may have moved closer to Saturn in the recent past, making the moon a kind of remote snowplough that widened the initial gap, giving it the 4500 km width it has today. If on the other hand the orbit of Mimas moved outwards, the particles would return to their original position, rather as if a snowplough were to reverse and stop pushing the snow, letting it spread out again. Using numerical simulations, the researchers calculated that Mimas must have migrated inwards by 9000 km over a few million years in order to open up the 4500 km gap that currently makes up the Cassini Division.

A natural satellite, such as the Moon, normally tends to move away from its planet rather than closer to it. In order to migrate inwards, a moon has to be able to lose energy, particularly by heating up, which would cause its internal ice to melt and weaken its outer crust. However, the state of Mimas' surface, which still bears the scars of relatively ancient meteorite impacts, does not tally with such a scenario. The researchers' second hypothesis, which remains to be confirmed, is that the loss of heat was shared out between Mimas and Enceladus, another of Saturn's moons, through orbital resonance. This would have caused the creation of the internal oceans that the Cassini spacecraft detected below the surface of both these bodies.

Today, Mimas has begun to migrate outwards again. According to the researchers' calculations, the Cassini Division is likely to take around 40 million years to close up again. Thanks to these findings, scientists may view the presence of gaps in the rings of an exoplanet as a clue that it could have moons with oceans.
-end-
*The researchers belong to the Institut de Mécanique Céleste et de Calcul des Éphémérides (Observatoire de Paris - PSL / CNRS), Institut UTINAM (CNRS / Université de Franche-Comté), Institut de Physique du Globe de Paris (CNRS / Université de Paris / IPGP / IGN), Laboratoire de Planétologie et Géodynamique (Université de Nantes / CNRS / Université d'Angers), Namur Institute for Complex Systems (Université de Namur), and the Jet Propulsion Laboratory (NASA).

CNRS

Related Saturn Articles:

In a cosmic hit-and-run, icy Saturn moon may have flipped
Enceladus -- a large icy, oceanic moon of Saturn -- may have flipped, the possible victim of an out-of-this-world wallop.
Saturn's bulging core implies moons younger than thought
Freshly harvested data from NASA's Cassini mission reveals that the ringed planet's moons may be younger than previously thought.
Mystery solved behind birth of Saturn's rings
A team of researchers have presented a new model for the origin of Saturn's rings based on results of computer simulations.
Climate of Jupiter and Saturn may yield clues to Earth's weather
Turning his interest in meteorology toward planetary science, University of Houston professor Liming Li is analyzing data collected from Jupiter, Saturn and Saturn's largest moon, Titan, to find clues about Earth's past and future weather.
UM researcher, NASA team discover how water escapes from Saturn
A University of Montana professor who studies astrophysics has discovered how water ions escape from Saturn's environment.
Simulating the jet streams and anticyclones of Jupiter and Saturn
A University of Alberta researcher has successfully generated 3-D simulations of deep jet streams and storms on Jupiter and Saturn, helping to satiate our eternal quest for knowledge of planetary dynamics.
Origin of Saturn's F ring and its shepherd satellites revealed
HYODO Ryuki, a second-year student in the Doctoral Program, and Professor OHTSUKI Keiji of the Graduate School of Science at Kobe University have revealed that Saturn's F ring and its shepherd satellites are natural outcome of the final stage of formation of Saturn's satellite system.
Saturn's rings in a supercomputer
Researchers from the Lomonosov Moscow State University explained the structure of Saturn's rings and modeled them using a supercomputer.
Small thunderstorms may add up to massive cyclones on Saturn
In a paper published today in the journal Nature Geoscience, atmospheric scientists at MIT propose a possible mechanism for Saturn's polar cyclones: over time, small, short-lived thunderstorms across the planet may build up angular momentum, or spin, within the atmosphere -- ultimately stirring up a massive and long-lasting vortex at the poles.
Geochemical process on Saturn's moon linked to life's origin
New work has revealed the pH of water spewing from a geyser-like plume on Saturn's moon Enceladus.

Related Saturn Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...