Nav: Home

Tracking major sources of energy loss in compact fusion facilities

June 11, 2019

A key obstacle to controlling on Earth the fusion that powers the sun and stars is leakage of energy and particles from plasma, the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions. At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), physicists have been focusing on validating computer simulations that forecast energy losses caused by turbulent transport during fusion experiments.

Researchers used codes developed at General Atomics (GA) in San Diego to compare theoretical predictions of electron and ion turbulent transport with findings of the first campaign of the laboratory's compact -- or "low-aspect ratio" -- National Spherical Torus Experiment-Upgrade (NSTX-U). GA, which operates the DIII-D National Fusion Facility for the DOE, has developed codes well-suited for this purpose.

Low-aspect ratio tokamaks are shaped like cored apples, unlike the more widely used conventional tokamaks that are shaped like doughnuts.

State-of-the-art codes

"We have state-of-the-art codes based on sophisticated theory to predict transport," said physicist Walter Guttenfelder, lead author of a Nuclear Fusion paper that reports the findings of a team of researchers. "We must now validate these codes over a broad range of conditions to be confident that we can use the predictions to optimize present and future experiments."

Analysis of the transport observed in NSTX-U experiments found that a major factor behind the losses was turbulence that caused the transport of electrons to be "anomalous," meaning that they spread rapidly, similar to the way that milk mixes with coffee when stirred by a spoon. The GA codes predict the cause of these losses to be a complex mix of three different types of turbulence.

The observed findings opened a new chapter in the development of predictions of transport in low-aspect ratio tokamaks -- a type of fusion facility that could serve as a model for next-generation fusion reactors that combine light elements in the form of plasma to produce energy. Scientists around the world are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

Researchers at PPPL now aim to identify the mechanisms behind the anomalous electron transport in a compact tokamak. Simulations predict that such energy loss stems from the presence of three distinct types of complex turbulence -- two types with relatively long wavelengths and a third with wavelengths a fraction of the size of the larger two.

The impact of one of the two long-wave types, which is typically found in the core of low-aspect ratio tokamaks as well as in the edge of the plasma in conventional tokamaks, must be fully taken into account when predicting low-aspect ratio transport.

Challenge to simulate

However, the combined impact of all three types of turbulence is a challenge to simulate since scientists normally study the different wavelengths separately. Physicists at the Massachusetts Institute of Technology (MIT) have recently performed multi-scale simulations and their work highlights the significant supercomputer time such simulations require.

Researchers must now test additional simulations to achieve more complete agreement between predictions of transport and experiments on plasmas in low-aspect ratio tokamaks. Included in these comparisons will be measurements of turbulence taken by University of Wisconsin-Madison coauthors of the Nuclear Fusion paper that will better constrain predictions. Improved agreement will provide assurance of energy-loss predictions for present and future facilities.
-end-
Support for this work comes from the DOE Office of Science. The National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility, enabled the simulations. NSTX-U diagnostic equipment from the University of Wisconsin-Madison provided data from experiments.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science (link is external).

DOE/Princeton Plasma Physics Laboratory

Related Plasma Articles:

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.
A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.
Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.
Chemotherapeutic drugs and plasma proteins: Exploring new dimensions
This review provides a bird's eye view of interaction of a number of clinically important drugs currently in use that show covalent or non-covalent interaction with serum proteins.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Intense microwave pulse ionizes its own channel through plasma
More than 30 years ago, researchers theoretically predicted the ionization-induced channeling of an intense microwave beam propagating through a neutral gas (>103 Pa) -- and now it's finally been observed experimentally.
Plasma thruster: New space debris removal technology
A Japanese and Australian research group has discovered new technology to remove space debris using a single propulsion system in a helicon plasma thruster.
Separating the sound from the noise in hot plasma fusion
For fusion power plants to be effective, scientists must find a way to trigger the low-to-high confinement transition, associated with zonal flows of plasma.
More Plasma News and Plasma Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.